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The non-linearities inherent to resonant extraction prevent us from reasonably 
assuming that the extracted phase space is Gaussian. Thus Courant-Snyder 
parameters are not sufficient to accurately describe the Switchyard beam. 

In order to better match the Switchyard optics to the actual shape of the resonantly-
extracted beam, we set out to directly reconstruct the phase space distribution using 
Computed Tomography.

So far, I have built a beam simulation to test reconstruction methods and determine 
their limitations. These simulations inform not only which methods we should use, but 
how we should take the beam data in Switchyard.

Purpose
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By imaging the phase space distribution of the beam entering the P1 line, we can 
determine the effective ellipse that encompasses the beam (tails and all). By 
matching the beamline with the encompassing ellipse as initial conditions, we can 
improve the efficiency of MI-SY extraction. Shown below is a sample beam 
distribution and the encompassing ellipse.

Purpose
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A two-dimensional image may be reconstructed from several one-dimensional 
projections. The reconstruction process is known as “computed tomography”. 

Computed Tomography
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Source: http://www.dspguide.com/ch25/5.htm

Projection:

Reconstruction:

t

θ

The reconstruction involves computing 
the Fourier Transform R(w,θ) of each 
profile P(t,θ), then simultaneously 
back-projecting through t = xcos(θ) + 
ysin(θ) and computing the inverse 
Fourier Transform, then finally 
integrating over all projection angles.

A two-dimensional image may be reconstructed from several one-dimensional 
projections. The reconstruction process is known as “computed tomography”. 



By filtering each projection before reconstruction, a more accurate depiction of the original object 
is achieved. This is one of the most common and efficient computed tomography algorithms, 
known as “Filtered Back-Projection” (FBP). 

Filtered Back-Projection Computed Tomography
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Source: http://www.dspguide.com/ch25/5.htm

FBP Reconstruction:

Filter



FBP Beam Analogy
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Projection (beam profile):

Compare to general projection:

To apply the FBP algorithm, we must make an analogy between beam optics and projections of 
an object at several different angles by modifying the beam projections as measured by the 
multiwire.



To apply the FBP algorithm, we must make an analogy between beam optics and projections of 
an object at several different angles by modifying the beam projections as measured by the 
multiwire.

FBP Beam Analogy

9/1/16 Adam Watts | Simulated Tomography of Beam Transverse Phase Space7

Modified beam projection:

Compare to general projection:



To apply the FBP algorithm, we must make an analogy between beam optics and projections of 
an object at several different angles by modifying the beam projections as measured by the 
multiwire.

FBP Beam Analogy
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To summarize:
● Vary R matrix between multiwire and point at which we want to reconstruct beam phase 

space (i.e. scan quadrupoles).
● Take beam profile for each quadrupole setting.
● Scale beam profiles vertically by s and horizontally by 1/s.
● Apply FBP reconstruction algorithm on scaled profiles, integrating over phase space 

orientation angle θ.

– **Note that θ is not the betatron phase, and is independent of the beam.  
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Beam simulation (Python code)
Generate initial random beam distribution with asymmetry and tails:

sigmax = 0.005

sigmaxp = sigmax/4

x0 = np.random.normal(0,sigmax,10000)

xp0 = -30*x0**2 + 0.8*x0 + np.random.normal(0,sigmaxp,10000)
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Beam simulation (Python code)
Pass each particle through linear optics, i.e. simple FODO channel:

L = 1 # drift length [m]

O = np.array([[1,L],[0,1]])

F = np.array([

              [np.cos(k**0.5),(k**-0.5)*np.sin(k**0.5)],

              [-(k**0.5)*np.sin(k**0.5),np.cos(k**0.5)]

            ])

D = np.array([

              [np.cosh(k**0.5),(k**-0.5)*np.sinh(k**0.5)],

              [-(k**0.5)*np.sinh(k**0.5),np.cosh(k**0.5)]

            ])

R = np.linalg.multi_dot([O,D,O,F,O,D,O,F,O,D,O,F])

xnew = R[0][0]*x + R[0][1]*xp

xpnew = R[1][0]*x + R[1][1]*xp
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Beam simulation (Python code)
Simulate a multiwire profile by using a fixed-width fixed-bin histogram on all “x” values:

num_wires = 48

wire_pitch = 0.001

low_x_lim = -(num_wires/2)*wire_pitch

high_x_lim = (num_wires/2)*wire_pitch

binBoundaries = np.linspace(low_x_lim,high_x_lim,num_wires+1)

histarray = plt.hist(xnew,bins=binBoundaries)[0]
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Beam simulation (Python code)
Repeat process for each new beamline tune by varying the k values of all the quadrupoles. Thus we 
collect beam profiles for each new phase space orientation angle θ. We want to have “enough” 
projections at angles spanning as close to 180 degrees as possible. 

k_array = np.linspace(0.315,0.91,50)

After each profile is taken, calculate the scaling factor and orientation angle for that tune.

theta = np.arctan(R[0][1]/R[0][0])
s = np.sqrt(R[0][0]**2+R[0][1]**2)

Choice of the k values in the array depends on how many projections we want (i.e. “a lot”), and how 
wide a range of θ we can achieve.
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Beam simulation (Python code)
Collect all the profiles into a single structure known as a sinogram that summarizes how the beam 
profile changed as a function of orientation angle. Then scale each profile vertically by s and 
horizontally by 1/s. 

Scaled and un-scaled sinograms are shown below for comparison. Note that there is clipping of the 
beam tails due to the finite size of the multiwire.
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Beam simulation, FBP reconstruction
First we use the Python package “sci-kit image”, and in particular the “iradon” module, to convert the scaled 
sinogram data into a reconstructed transverse phase space. There are options for several different filters, and 
the following plot compares the performance of each.

Since we know the initial beam distribution we're trying to reconstruct, we can subtract the reconstruction 
from the original distribution to compute an RMS error for the reconstruction.
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Beam simulation, FBP errors
These plots show the difference error between the initial beam and the reconstruction. Both initial and 
reconstructed distributions have each pixel normalized to the sum of all pixel values; the resulting pixel values 
represent a probability, where the sum of all pixel values is 1.0. 

Pictured below is the difference error original – reconstructed. Thus positive (red) errors correspond to pixels 
missing from the reconstruction, and negative (blue) errors correspond to artifacts added by reconstruction. 
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Simultaneous Algebraic Reconstruction Technique 

Another readily-available reconstruction method exists in the “sci-kit image” package, 
known as Simultaneous Algebraic Reconstruction Tomography (SART). which is 
advantageous when projection data is limited. 

SART is an iterative method that solves an under-constrained system of linear equations 
to create a reconstruction. The reconstruction is then fed into the algorithm again as an 
initial “guess”.

The results are more promising than the single-iteration FBP algorithm, though there are 
free parameters that must be chosen to fine-tune the result.

Source: A. C. Kak and Malcolm Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, 1988.



9/1/16 Adam Watts | Simulated Tomography of Beam Transverse Phase Space17

Simultaneous Algebraic Reconstruction Technique 

If the original image to be reconstructed is overlain with 
a grid, or represented as an array of pixels, we can 
write the following linear system of equations that 
describe each one-dimensional projection. For N pixels 
in the original image:

The matrix elements w
ij
 represent the fractional area of 

a pixel subtended by the jth  imaging ray. Thus each 
profile p

i 
is the sum of the fractional area subtended by 

all imaging rays, weighted by the value of the original 
image's pixel f

j
.

Inverting this system and solving for the values of every 
pixel f

i 
 reconstructs the original image discretely, and is 

the pupose of SART. 

Source: A. C. Kak and Malcolm Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, 1988.

For N pixels in the original image:
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Simultaneous Algebraic Reconstruction Tomography 
Now we vary the “relaxation” parameter and investigate the quality of reconstruction as a function of 
successive iterations. The RMS error is used as the figure of merit to determine reconstruction quality.

The resulting plot helps determine the combination of relaxation parameter and number of iterations that 
produce the best reconstruction, i.e. that which is most faithful of the original distribution.

It is apparent that increased iterations and relaxation value contribute to increased artifacts, presumably 
due to the propagation of noise/artifacts from previous iterations. A balance between iterations and 
relaxation provides best overall result (i.e. lowest RMS error)
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SART vs. FBP
This is a qualitative comparison of the errors for both FBP and SART, using the parameters 
for each that returned the lowest RMS error respectively.

It is apparent that SART produces less artifacts (blue) and misses less data in the 
reconstruction (red) than FBP. 
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SART with many iterations
Tail reconstruction appears improved for larger iteration values, though artifacts begin to dominate. Over-
iteration seems to improve tail reconstruction somewhat, but at the cost of “salt and pepper” noise, as well 
as phantom ring surrounding the beam. This ring is not present for a bigger multiwire, so presumably the 
ring artifact is due to beam clipping on the multiwire aperture.

4.8mm-wide 
multiwire

19.2cm-wide 
multiwire
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MTA beam reconstructed @ C-magnet
Multiwire data is limited for MTA. Only 5 tunes are recorded for this reconstruction, not completely 
spanning the full 180 degrees needed for the phase orientation angle. Note that we are particularly limited 
in phase orientation angle range in the vertical plane. Also note that the scaling factor and phase 
orientation angle were calculated using the MAD deck, which could be a source of error.
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MTA beam, FBP
FBP reconstruction with the Shepp-Logan filter is pictured below. Clearly more data is 
needed to make any conclusions from the reconstruction.
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MTA beam, SART
SART reconstruction with 2 iterations is pictured below. While better than the FBP 
reconstruction, more data is needed for a proper reconstruction to determine the whether the 
beam can be considered elliptical.
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P1 beamline
MAD simulations of the P1 beamline, while varying Q703 current, can show how the phase 
orientation angle (blue) changes with the dispersion (green). Ideally, we will choose a current 
range for the Q703 scan that provides wide phase angle sweep and minimal dispersion.
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P1 beamline
MAD simulations of the P1 beamline, while varying Q703 current, can show how the phase 
orientation angle (blue) changes with the dispersion (green). Ideally, we will choose a current 
range for the Q703 scan that provides wide phase angle sweep and minimal dispersion.
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Backup Slides
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FBP with no filter vs. Shepp-Logan for ellipse

No filter Shepp-Logan filter
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Elliptical beam reconstruction
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Elliptical beam reconstruction
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Bigger multiwire
Outlying particles are reconstructed well by this method. One potential explanation is the aforementioned 
“scraping” of the beam tails due to the finite size of the multiwire detector. As we vary the quadrupoles, the 
beam may become larger than the multiwire, and information is lost. 

To investigate, we redo the scan with the same initial distribution, but increase the size of the multiwire 
detector by a factor of 4 to eliminate any visible clipping in the sinogram.
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Bigger 
multiwire 
SART
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Bigger 
multiwire 
SART
errors



9/1/16 Adam Watts | Simulated Tomography of Beam Transverse Phase Space35

Bigger multiwire FBP reconstruction
Tail reconstruction is not noticeably improved for the larger multiwire detector.
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Bigger multiwire FBP reconstruction
Tail reconstruction is not noticeably improved for the larger multiwire detector.
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Bigger multiwire high-resolution FBP


