
Burning up the Beampipe 

MI NOTES 

08190 

John A. JOHNSTONE 

The question is; if the beam runs into the beampipe wall, after what length of time, if 

ever, does the pipe melt and thereby lose vacuum. The geometry of the situation and 

relationship between the reference frames of the beam and wall are illustrated below. 

4 
Ar 

r 

a) view dong the ybem axis. 

Yb 

b) View along the zrWRet axis. 



1. Aunroximate Energy Denosition in the Pine 

The energy lost by a single proton hitting a wall of thickness Ar at a small angle 8 is: 

AE ACE 
8 6x 

6E /6x for an ultra-relativistic proton incident on a composite 

pn , electronic charges 2, , and mass numbers A, is given by: 

(1) 

target of partial densities 

1 (2) 

with 1,~ 16 Z,‘*’ eV and D = .3070 MeVcm2/gm. For 150 GeV protons incident on 

15% chrome steel, (2) predicts 6E/&x to be = 13.5 MeV/cm. 

If the small increase in beam size due to multiple scattering 

incident protons/set characterized by a Gaussian cross-sectional 

p(xb ,Yb) = -& e-(x: + ybvb2 

is ignored, then for N 

density: 

(3) 

the energy deposited at some point (o,r,z) in the pipe is simply proportional to the 

beam density at that point. Furthermore, since the pipe radius ru is by necessity several 

times larger than CJ of the beam, the curvature of the pipe over the region of energy 

deposition can be neglected. For this case, in the reference frame of the pipe, the 

energy deposition density becomes: 

p&&z) z -& $ e-rw202 e-@z - (r-rca2/202 [ 1 (4) 

For a thin wall, Ar /r. <t: 1, the weak dependence of & on r can be averaged to pro- 

duce: 

with -n; < $ < ‘II: and - < z < 00. 
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2. Diffusion of Heat in the Beamnipe 

If energy losses due to radiative and convective processes are ignored, the temperature 

of the pipe changes with time according to the diffusion equation: 

1 a2T m- +a2T 
t-0’ a@ a3 1 (6) 

where p is the density, c the specific heat, and K the thermal conductivity. In general, 

K can vary significantly with temperature, but for steels with chrome content in the 

vicinity of 10+20%, K is roughly constant from room temperature up to the melting 

point. 

From (5) it can be seen that BE is a very slowly varying function of z relative to $ for 

incident angles 8 = mrads. As a result, in the neighborhood of the peak in the energy 

distribution, at z = AT-/~@ it can be concluded that: 

a2T < 1 a2T -- 
az2 4 ao2 

(7) 

In other words, near the maximum in the temperature distribution heat diffuses 

predominantly around the pipe rather than along its length, as one expects intuitively. 

Near the center therefore the temperature T can be approximately separated into: 

T(@,z;t) = To + z($;t) e-@Z - hn)2na2 (8) 

where To is the temperature at time c = 0, and corrections to (8) are of 0 [C12]. 

It follows from (6) and (8) that z is the solution of the approximate equation: 

az e-r%@2n(J2 + K a2T 

at = po 
-- 

pc per; aQ2 
(9) 

where p. = N [6E /6x] /2x02. 



-4- 

Employing a Fourier series transform in 9, z is solved from (9) to be: 

(10) 

+ Pod - 
-z 4 

x 
cosn 

n2 1-e 
-Kdtlr~ 

7cK I, 
& cosIu: ,-rb2/20z 

n=l -It 

The result (10) can be simplified considerably. Replacement of the error function by 1 

in the first line of (10) introduces an error E c 1*10W6 for r. > about 1.50. To the 

same level of accuracy the -rc + n integration limits can be extended to Z!P and the 

integration performed analytically. The resulting series in n can then be summed using 

the Euler-Maclaurin approximation, with the final form for z becoming: 

6E [ I[ 6x 
a e-Q2/a2 - ed + Gi Q, 

I erf [Wa] - erf [<D] II (11) mt 1 
N z- 

27cK 

with 

Again, with r. > about 1.50, the expression (11) for z approximates (10) to an accu- 

racy of much better than 1%. 

The hottest point in the pipe obviously occurs at the maximum in the energy deposi- 

tion density (5); that is, at $ = 0, z = Ar 128. From (8) and (11) the variation of tem- 

perature with time at this point is: 

T,,(t) = To + L [ 1 6E [a-l] - 
2m 6x (12) 

The melting point of the steel is therefore reached after a time given approximately by: 

-2 
t mfd = [ Lelt - To I2 (13) 
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In this form, several simple scaling laws become apparent. The time required to melt 

the beam pipe is found to increase linearly with the cross-sectional area of the beam, 

but decreases as the square of the beam curmnt. A particularly interesting prediction of 

(13) is that, at least for the small incident angles 8 considered here, the melting time is 

expected to be largely independent of 0. 

Solving the diffusion equation (3) exactly, rather than employing the separable approx- 

imation (8) for the temperature distribution, does not alter these conclusions 

significantly. It is found in this case that the maximum temperature varies with time 

according to: 

T,Jt)=To+ (14) 

with: 

&1+2Kt 
pc o2 

; pG1+82xt 
PC02 

The approximation (12) reproduces the exact result (14) up to corrections of 0 [e2]. 

The thermal properties of steels with chrome content in the range 10420% are fairly 

similar. A representative example is provided by 304 steel, which is a common stain- 

less steel with 17+19% chrome content. The relevant parameters for this material 

are: 

Melting point 1415 Oc 

density 8.03 g/cm3 

specific heat .502 J/g/% 

thermal conductivity .215 W/cuV°C [ @500 ‘C ] 

With N = 2010’~ protons/set, 6E/&.x = 13.5 MeV/cm, o = ,15 cm, and 8 = 5 mrads, 

eqn.(l2) predicts that the pipe will melt in 7 minutes, whereas the exact result (14) 

gives about 7 minutes 10 seconds. 
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3 . Ener-gy Losses Through Diffusion + Convection 

For a thin-walled pipe, i.e. Ar a 2xro, the loss of heat through convection to the 

atmosphere can not be justifiably ignored. If, near the maximum in the temperature 

distribution, the small diffusion of heat along the length of the pipe is once again 

neglected, then the diffusion equation becomes: 

where PE is now defined to be: 

(15) 

(16) 

Convective losses are most easily incorporated by rewriting (15) in terms of the aver- 

age temperature r from r. to ro+Ar . Integrating (15) gives: 

11 (17) 

At the inner wall of the pipe aT/& = 0. At the outer surface the gradient of the tem- 

perature is related to the heat loss via: 

aT ’ 

K ar L&r 
=-h, [T-T,] W 

where h, is the convection heat transfer coefficient, and To is room temperature. 

Since, for a thin wall, the average and surface temperatures must be very nearly the 

same, it is a good approximation to write the variation of T with time as: 

g=&+ K 1 aT m-- 
at PC PC i-i a$2 

-& [T-T,1 (19) 

c 
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Solutions to (19) are fundamentally different from those discussed in the preceding 

section, where it was shown that asymptotically the temperature increase with time 

was proportional to t 1’2. Here, because convective losses are proportional to T, it is 

clear that there always exists a maximum attainable temperature, at which point the 

energy being dispersed through diffusion and convection equals the energy deposited 

by PE. Whether this maximum temperature is above or below the steel’s melting point 

for a particular pE depends upon the thickness of the pipe & and the heat transfer 

coefficient h, . 

With r. B cs the diffusion equation (19) can be solved analytically using Fourier 

transforms, with the result: 

T=To+$& [E] p $ [e”@[erf(qa+Dkt)-erf(q+Q)] 
\ 

(20) 

and 

+ e-Q@ [ erf (Tp4lCx) - erf (rl-ip) 1 J 

At 0 = 0, the hottest point in the pipe, eqn.(20) reduces to: 

T(+O) = To + $ [$$I*$ [erf[wl-erfR1) (21) 

In the limit that h, + 0, eqn.(21) reduces to (12). For h, f 0, r does not increase 

indefinitely with time, but reaches a maximum value determined by the limit a + 00: 

T max = lim T=T,+ (22) 
a+- 

For small values of r\ ( h, small ), T,, is approximately given by: 

T max=TO+ N G [E] 5 =To+N[g] [ 8mco2h,lAr ]-1’2 (23) 
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A completely reliable value for h, is diffult to obtain. In principle h, can be calcu- 

lated, but this is very complicated and depends upon the geometry, whether the air 

exhibits laminar or turbulent flow, and the temperature distribution in the pipe. Since 

this temperature profile is determined in part by h, there is the further difficulty of 

acheiving a self-consistent solution. However, a reasonable approximation to h, can be 

obtained by considering the simplified geometry in which the temperature distribution 

described by (20) is replaced by a step function, and the wall of the pipe is replaced 

by a vertical sheet. In this case, for a sheet of vertical height L (cm) and uniform tem- 

perature Tsf (‘C ) the heat transfer coefficient to air is given approximately by: 

4 [ I Tsf -To ‘I4 
= 4.5x10A L 

w 

cm2 *C 
(24) 

The height Tsf and width L of the fictitious temperature step function approximating 

T can be defined by the conditions that at any time the total heat content and mean 

square width of the distribution agree with those of eqn.(20). That is: 

7 4~ r2(-To) 

T 
L2 

sf T--To) ; --g<y%=-, 

1 dr (T-To) 
- 

where y I Qro. For small values of h,, eqns(25) can be solved to give: 

Tsf -To 
L 

with 

F(t) = 
[ 1 -e-f]’ 

l-(l+$)e+ 

(25) 

(26) 

(27) 

and f = q2(a2-1). The function F (t ) is a slowly varying function of t , ranging from 

2 at t=O to 1 at t += independent of h,. Inserting eqns.(26) and (27) into (25), this 

variation of F(t) with t translates into less than a 20% change in h,. With the steel 
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and beam parameters listed at the end of the last section, h, is found to range from 

1.16010-~ W/cm2pC at F=To to 0.98*10-3 W/cm2/% at F+T,,. 

The graph shown below gives the temperature variation with time of the hottest point 

in a pipe of thickness At=1/16 inch [eqn.(21)]. The curve h=O is the analytic result 

obtained in the preceding section [eqn.(l5)]. The h=1.07e10-3 curve is eqn.(21) with 

h, given by its average value from t=O to 0~. It can be seen in this case that the 

amount of heat lost to the air by convection increases the melting time of the pipe 

from 7 minutes to slightly more than 18 minutes. 

Since the value derived above for h, is only approximate, it is worth remarking that a 

modest 12% increase in h, to 1.20010-~ W/cm2/oC would result in the pipe never 

reaching the melting point. 

h 
---- h -qnn-rr 

II 
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4. Energv Losses Through Diffusion + Convection + Thermal Radiation 

As the pipe reaches high temperatures the energy lost through thermal radiation can 

become a significant factor. To include this effect explicitly the analysis proceeds as in 

the development of eqn.(l7). Now, however, at the outer surface of the pipe the gra- 

dient of the temperature is related to the heat loss by: 

aT; 5 r lrO+Ar 
= - h, I T - To ] - qB [ T4 - 7’04 ] (28) 

where asB is the Stefan-Boltzmann constant, E is the emissivity of the steel, and T, is 

room temperature. 

The interior surface also radiates, but to some extent the emission and absorption 

processes tend to cancel in this case. Heat radiated from one section of the surface 

must either be reflected or absorbed and partially re-emitted by other areas of the pipe. 

Computationally, it would be difficult, and probably not very rewarding, to incorporate 

this subtle interplay of mechanisms exactly. It is not difficult, however, to bracket the 

correct answer. The two extremes to be considered are: 1) the interior surface does not 

radiate or, equivalently, emission and absorption at every point cancel, and; 2) as much 

heat is lost at the inner wall through radiation as at the outer surface. 

Again employing the 

ture of the steel must 

approximation that the surface temperature and average tempera- 

be nearly the same, the variation of r with time becomes: 

2 ~ PE t K 1 a2F - -- 
at PC PC r; a+2 

--&[%r,]-s[P-T$] (29) c 

The above equation describes the case in which the interior wall is assumed not to 

radiate. For the other extreme, in which interior radiation losses equal those of the 

exterior surface, E is replaced by 2~ in eqn(29). 
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Emissivity data are scarce and unreliable. The few available values of E vary widely, 

and seem to depend at the very least upon the type of steel, condition of the surface, 

temperature, and author. A fairly representative set of values for unoxidized steel gives 

the two points E = .08 at 100 ‘C, and E =.28 as a liquid. 

The two graphs on the following page show the variation with time of the maximum 

temperature in a pipe of thickness ti = l/16 inch which result from slightly different 

assumptions about the value of E. Otherwise the steel and beam parameters are those 

listed at the end of section 2, and the convection heat transfer coefficient h,=1.07010-~ 

W/cm2/oC. The E = 0 curves are the analytic result obtained in the preceding section 

[eqn.(21)]. The upper and lower solid lines in both graphs correspond to the two 

extremes that the inner wall does not radiate, and that the interior radiation losses 

equal those of the exterior, respectively. 

In the first graph the temperature dependence of E is taken approximately into account. 

For want of any better guidance, it is assumed that E varies linearly with T, so that 

E = .065 + T 13104 (with T in ‘C) in agreement with the two points given earlier. 

In the second graph temperatures have been calculated assuming that E is constant, 

with the value E = .15 being chosen as roughly the average value between T = To and 

T = 1000 ‘C. With either assumption it is found that the pipe will never melt. After =: 

10 minutes the temperature has essentially converged to its asymptotic value, with this 

maximum temperature being roughly in the range 850 + 1000 ‘C. 
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5 Summary . 

In short, it has been found that the beampipe will never melt as a consequence of the 

beam striking it at some small incident angle. With reasonable parameters for the 

energy deposited by the beam and the thermal characteristics of the steel pipe, a max- 

imum temperature is reached which is approximately 400 + 550 ‘C below the melting 

point of the steel. At this point the energy dispersed through diffusion, convection, and 

radiation cancels the energy deposited by the beam. 


