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1 Introduction

The purpose of this note is to document various calculations performed with the code
PE2D. PE2D is a finite element code which solves for the vector potential in a 2D
region. Compared to POISSON, a well-known code in the accelerator physics commu-
nity, PE2D allows the user to create triangular meshes which are extremely dense only
in the region of interest. The code employs second order isoparametric elements i.e.,
curvilinear triangles whose edges are second order curves over which the vector poten-
tial is interpolated by second order polynomials. The large system of equations which
results from the discretization is solved using a state of the art algorithm (ICCG); for
a given number of nodes, the results are more accurate than those produced by POIS-
SON; furthermore, the CPU ressources necessary to obtain a solution are considerably
reduced.

2 Theory and Conventions

The magnetic field in a source free region can be derived from a scalar potential func-
tion which verifies Laplace’s equation. In two dimensions, this scalar function can be
seen as either the real or imaginary part of an analytic function F (z). We therefore
introduce a complex potential

F (z) = −A(x, y) − iV (x, y) (1)

where A(x, y) and V (x, y) are respectively the magnetic scalar and vector potentials,
from which the magnetic field is derived as follows:

B =
∂A

∂z
x̂ −

∂A

∂x
ŷ (2)

= −

∂V

∂x
x̂−

∂V

∂y
ŷ (3)
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Using (2) and (3) it is easily verified that

dF

dz
= By + iBx (4)

Furthermore, since F (z) verifies the Cauchy-Riemann relations, it is analytic and so
are all its derivatives. The complex potential F (z) can be expanded as a Taylor series
about the origin

F (z) =
∞
∑

n=0

cnzn (5)

Thus

By + iBx =

∞
∑

n=1

ncnzn−1 (6)

Using the polar representation of z and setting cn = bn + ian, (5) can be recast in the
form

F (z) =

∞
∑

n=0

(bn + ian)

(

r

r0

)n

einφ (7)

=

∞
∑

n=0

(

r

r0

)n

[(bn cosnφ − an sin nφ) + i(an cosnφ + bn sin nφ)] (8)

where r0 is a conveniently chosen normalization radius. Identifying the real and imag-
inary parts of (1) and (7) yields

A(r, φ) = −

∞
∑

n=0

(

r

r0

)n

(bn cosnφ − an sin nφ) (9)

V (r, φ) = −

∞
∑

n=0

(

r

r0

)n

(an cosnφ − bn sin nφ) (10)

By(r, φ) =

∞
∑

n=1

(

r

r0

)n−1
n

r0
[bn cos(n − 1)φ − an sin(n − 1)φ] (11)

Bx(r, φ) =

∞
∑

n=1

(

r

r0

)n−1
n

r0
[bn sin(n − 1)φ + an cos(n − 1)φ] (12)

The multipoles coefficients an and bn can be obtained by expanding any one of the po-
tentials or field components as a Fourier series in the angular variable φ. For instance,

an = +
1

π

∫ 2π

0

(r0

r

)n

A(r, φ) sin nφ dφ (13)

bn = −

1

π

∫ 2π

0

(r0

r

)n

A(r, φ) cos nφ dφ (14)
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The geometry of a dipole magnet is usually such that By(x,−y) = B(x, y) and
Bx(−x, y) = −Bx(x, y). The latter condition imposes an = 0 and the former
b2k = 0 k = 1, 2, 3, . . .. Since the vanishing of the an depends on a “top-bottom”
symmetry which is usually present in most magnets (i.e., dipole,quads and sextupoles),
the coefficients bn and an are refered to as “normal” and “skew” respectively.

In particular, along the x-axis

By(x, 0) =

∞
∑

n=1

nbn

r0

(

x

r0

)n−1

(15)

In practice, the radius used for the Fourier expansion must be as large as possible in
order for the contribution of the higher order multipoles no to be lost in numerical
noise. Nevertheless, r must be a bit smaller than the radius of convergence of the
multipole expansion. The latter is equal to the shortest distance between the origin and
the sources, i.e., magnetized material or current-carrying conductors. In this note, all
multipoles are expressed in a system of coordinates where the the radial coordinate is
normalized at one inch i.e. 2.54 cm. The magnetic field is expressed in Tesla unless
otherwise stated. The multipoles coefficients are normalized with respect to the normal
dipole field and therefore, have units of inch−(n−1) where 2n is the pole index. To
avoid sign ambiguities, the dipole coefficient 1 b1 is always taken to be positive, which
corresponds to a field pointing in the +y direction. The signs of the higher order
multipoles are to be interpreted relatively to the dipole coefficient.

3 Saturation and Field Quality

The most obvious way of generating a “constant” magnetic field is a simple ‘straight”
gap such as the one shown in figure 1. Note the vertical profile which is meant to con-
centrate the flux in the gap region. Assuming for the moment that the permeability is
infinite, it is intuitively clear that the vertical component of the field will have a ten-
dency to decrease in magnitude as one moves aways from the origin in the horizontal
midplane. This effect, which can in the first approximation, be described by a nega-
tive sextupole term is usually compensated for by the introduction of small “bumps”
or “shims” as illustrated in figure 2. By enhancing the vertical field at the edges of
the magnet, the shims introduce a positive sextupole component. The compensation
is usually such that the net sextupole is slightly positive. In pratice, the permeabil-
ity is a monotone decreasing function of the excitation. The magnitude of the dipole
component of the field is slightly decreased due to the increased reluctance of the iron.
The importance of the latter effect is often quoted in the form of a coefficient called
AMPFAC (AMPere FACtor) which is simply the ratio between the dipole field corre-
sponding to infinite permeability and the actual dipole field

AMPFAC =
b1(µ = ∞)

b1
(16)

1The multipole index is often specified in reference to a power series expansion of the magnetic field
rather than of the potential. In that case, b0 is the dipole coefficient, b1 is the quadrupole, b2 is the sextupole,
etc.
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For small levels of saturation, AMPFAC is a measure of the factor by which the excita-
tion current must be multiplied for the magnet to produce a an on-axis field equal to that
produced with an idealized µ = ∞ core. As the excitation is increased, the shims are
the first regions of the magnet to go into saturation; thus, the sextupole coefficient starts
from a small positive value, goes through zero and becomes negative when the maxi-
mum current is reached. This phenomenon is illustrated in figure 3 where B > 1.7198
Tesla in the dark regions. The current is I = 9417 A.

The residual multipoles due to saturation i.e., for a given lamination geometry, the
difference between the µ = ∞ multipoles and the multipoles calculated by taking into
account the BH curve of the steel are very sensitive to the exact form of this BH
curve at high excitations. For pratical reasons, there is often no available experimental
data at excitations levels beyond a few hundred Oersteds. One must therefore have
recourse to some form of extrapolation. Three options are available:

• Linear extrapolation

• Total saturation beyond the last data point available

• Extrapolation based on a physical model of the behavior of the material at high
field

The code POISSON uses linear extrapolation and PE2D assumes total saturation
i.e. dB/dH = 1 beyond the last data point. Since the magnetization must reache
a maximum value at very large excitations, it is clear that linear extrapolation is too
optimistic; one the other hand the assumption of total saturation beyond the last point
on the curve is certainly overly pessimistic.

Figure 4 is a plot of the BH curve for the ARMCO steel which will be used in the
fabrication of the main injector dipole magnets. Figure 5 is a plot of the permeability
as a function of the excitation beyond the last point in the curve of figure 4 for three
different extrapolation methods. The solid curve, which is probably the most realistic,
has been obtained by using the so-called Frolich-Kennelly extrapolation formula

1

4πM
=

1

4πH
+

1

4πMs

[CGS] (17)

where Ms is the saturation magnetization and a is a coefficient which depends on the
material. For ARMCO steel,

a ' 9.1118 4πMs ' 19407

4



Figure 1: A simple “straight” gap.
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Figure 2: A corrected gap.
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Figure 3: The tip of the pole and the correction shims are the first regions to saturate.
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Figure 4: Experimental BH curve for the ARMCO magnetic steel used in the fabriac-
tion of the MI dipole magnet core.
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Figure 5: µ vs H at large H for three different extrapolation schemes.
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MAIN INJECTOR DIPOLE
NORMAL MULTIPOLES AT r = r0 = 2.54 cm

INFINITE PERMEABILITY
Dipole Field in Tesla

Higher harmonics in relative units ×104

I = 9417 A
J = 364.909 A/cm2

pole
2 +1.86359
6 +0.21785
10 +0.17023
14 +0.03545

MAIN INJECTOR DIPOLE
NORMAL MULTIPOLES AT r = r0 = 2.54 cm

ARMCO steel laminations
LINEAR EXTRAPOLATION

Dipole Field in Tesla
Higher Harmonics in relative units ×104

I = 502 A I = 4900 A I = 7100 A I = 9417 A
J = 19.4525 A/cm2 J = 189.875 A/cm2 J = 275.125 A/cm2 J = 364.909 A/cm2

pole
2 +0.09925 +0.96187 +1.38247 +1.73467
6 +0.22003 −0.02544 −0.97478 −9.24396
10 +0.18395 +0.15194 −0.04830 −1.29193
14 +0.04032 +0.00523 −0.01839 −0.15969

MAIN INJECTOR DIPOLE
NORMAL MULTIPOLES AT r = r0 = 2.54 cm

ARMCO steel laminations
PE2D INTERNAL EXTRAPOLATION METHOD

Dipole Field in Tesla
Higher harmonics in relative units ×104

I = 502 A I = 4900 A I = 7100A I = 9417 A
J = 19.4525 A/cm2 J = 189.875 A/cm2 J = 275.125 A/cm2 J = 364.909 A/cm2

pole
2 +0.09925 +0.96187 +1.38247 +1.686414
6 +0.22003 −0.02170 −0.97478 −22.05191
10 +0.18395 +0.15229 −0.04830 −7.89777
14 +0.04032 +0.01491 −0.01839 −0.53637
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MAIN INJECTOR DIPOLE
NORMAL MULTIPOLES AT r = r0 = 2.54 cm

ARMCO steel laminations
FROLICH-KENNELLY EXTRAPOLATION METHOD

Dipole Field in Tesla
Higher harmonics in relative units ×104

I = 7100 A I = 9417 A
J = 275.125 A/cm2 J = 364.909 A/cm2

pole
2 +1.38251 +1.72834
6 −1.02214 −14.5435
10 −0.08503 −3.34599
14 −0.02274 −0.46563

4 Effect of a Backleg gap

To facilitate the insertion of the coils, the main injector magnet core is consituted of
two symmetric parts which are welded together in the final phases of the the assembly.
Different factors, for example non-uniformities in the laminations may result in a small
gap between the upper and lower sections of the core. To the extent that this gap
is relatively uniform (or equivalently if the assembly errors are uniformly distributed
along the length of the magnet), the principal effect of this “backleg” gap will be a
small reduction in the magnitude of the dipole component of the field. Since they
depend mostly on the pole profile, the higher order multipoles are not, in the first
approximation, expected to be affected. In the case where the backleg gap is such that
the left-right symmetry of the magnet is broken, one expects the appearance of even
order coefficients. In the first approximation the most important effect is the appearance
of a quadrupole term (b2) in the multipole expansion of the field.

Multipoles have been calculated assuming both a symmetric and a wedge-shaped
backleg gap as illustrated in figures 6 and 7 for g = 0.0025, 0.0050, 0.025 and g =
0.050 inch. As expected, except for a small reduction in the dipole, the odd order
multipoles are not significantly affected by the presence of a backleg gap. On the other
hand, a wedge-shaped gap introduces a significant quadrupole. As long as g remains
small, the effect of the gap on both the dipole and the quadrupole coefficient scale
linearly with g.
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Figure 6: Symmetric backleg gap.
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Figure 7: Wedge-shaped backleg gap.
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NORMAL MULTIPOLES AT r = r0 = 2.54 cm
NO BACKLEG GAP – ARMCO steel laminations

LINEAR EXTRAPOLATION
Dipole Field in Tesla

Higher harmonics in relative units ×104

I = 502 A I = 4900 A I = 9417 A
J = 19.4525 A/cm2 J = 189.875 A/cm2 J = 364.909 A/cm2

pole
2 +0.09925 +0.96188 +1.73755
4 +0.00000 +0.00000 +0.00000
6 +0.21726 −0.02391 −10.0010
8 +0.00000 +0.00000 +0.00000
10 +0.17684 +0.15729 −2.08174
12 +0.00000 +0.00000 +0.00000
14 +0.00332 −0.02691 −0.40160

NORMAL MULTIPOLES AT r = r0 = 2.54 cm
SYMMETRIC GAP 0.0025 in – ARMCO steel laminations

LINEAR EXTRAPOLATION
Dipole Field in Tesla

Higher harmonics in relative units ×104

I = 502 A I = 4900 A I = 9417 A
J = 19.4525 A/cm2 J = 189.875 A/cm2 J = 364.909 A/cm2

pole
2 +0.09900 +0.95952 +1.73465
4 +0.00000 +0.00000 +0.00000
6 +0.21192 −0.04400 −9.93058
8 +0.00000 +0.00000 +0.00000
10 +0.16097 +0.13007 −2.08451
12 +0.00000 +0.00000 +0.00000
14 +0.02046 +0.02064 −0.41183
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NORMAL MULTIPOLES AT r = r0 = 2.54 cm
SYMMETRIC GAP 0.0050 in – ARMCO steel laminations

LINEAR EXTRAPOLATION
Dipole Field in Tesla

Higher harmonics in relative units ×104

I = 502 A I = 4900 A I = 9417 A
J = 19.4525 A/cm2 J = 189.875 A/cm2 J = 364.909 A/cm2

pole
2 +0.09876 +0.95717 +1.73174
4 +0.00000 +0.00000 +0.00000
6 +0.19791 −0.00459 −9.84453
8 +0.00000 +0.00000 +0.00000
10 +0.14862 +0.12645 −2.07478
12 +0.00000 +0.00000 +0.00000
14 +0.01785 +0.01968 −0.40761

NORMAL MULTIPOLES AT r = r0 = 2.54 cm
SYMMETRIC GAP 0.025 in – ARMCO steel laminations

LINEAR EXTRAPOLATION
Dipole Field in Tesla

Higher harmonics in relative units ×104

I = 502 A I = 4900 A I = 9417 A
J = 19.4525 A/cm2 J = 189.875 A/cm2 J = 364.909 A/cm2

pole
2 +0.09683 +0.93879 +1.70864
4 +0.00000 +0.00000 +0.00000
6 +0.09982 −0.13618 −9.22067
8 +0.00000 +0.00000 +0.00000
10 +0.06631 +0.04919 −1.98676
12 +0.00000 +0.00000 +0.00000
14 −0.04725 −0.00734 −0.39189
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NORMAL MULTIPOLES AT r = r0 = 2.54 cm
SYMMETRIC GAP 0.050 in – ARMCO steel laminations

LINEAR EXTRAPOLATION
Dipole Field in Tesla

Higher harmonics in relative units ×104

I = 502 A I = 4900 A I = 9417 A
J = 19.4525 A/cm2 J = 189.875 A/cm2 J = 364.909 A/cm2

pole
2 +0.09453 +0.91678 +1.68007
4 +0.00000 +0.00000 +0.00000
6 −0.05213 −0.27885 −8.61512
8 +0.00000 +0.00000 +0.00000
10 −0.04184 −0.05204 −1.94984
12 +0.00000 +0.00000 +0.00000
14 −0.03502 −0.03170 −0.37895

NORMAL MULTIPOLES AT r = r0 = 2.54 cm
WEDGE GAP 0.0025 in – ARMCO steel laminations

LINEAR EXTRAPOLATION
Dipole Field in Tesla

Higher harmonics in relative units ×104

I = 502 A I = 4900 A I = 9417 A
J = 19.4525 A/cm2 J = 189.875 A/cm2 J = 364.909 A/cm2

pole
2 +0.09907 +0.95947 +1.73444
4 −0.98804 −0.93528 −0.90472
6 +0.19848 −0.02633 −10.1994
8 −0.00232 −0.00697 −0.01546
10 +0.16921 +0.13586 −1.53210
12 −0.00733 −0.01262 +0.00734
14 +0.04557 +0.03140 −1.05515
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NORMAL MULTIPOLES AT r = r0 = 2.54 cm
WEDGE GAP 0.005 in – ARMCO steel laminations

LINEAR EXTRAPOLATION
Dipole Field in Tesla

Higher harmonics in relative units ×104

I = 502 A I = 4900 A I = 9417 A
J = 19.4525 A/cm2 J = 189.875 A/cm2 J = 364.909 A/cm2

pole
2 +0.09892 +0.96106 +1.72540
4 −1.91357 −1.87329 −1.73345
6 +0.23251 +0.11877 −8.90151
8 −0.02519 −0.00735 +0.05863
10 +0.17082 +0.14813 −1.13453
12 −0.04396 −0.02859 −0.09653
14 +0.05421 +0.04296 −0.08077

NORMAL MULTIPOLES AT r = r0 = 2.54 cm
WEDGE GAP 0.025 in – ARMCO steel laminations

LINEAR EXTRAPOLATION
Dipole Field in Tesla

Higher harmonics in relative units ×104

I = 502 A I = 4900 A I = 9417 A
J = 19.4525 A/cm2 J = 189.875 A/cm2 J = 364.909 A/cm2

pole
2 +0.09782 +0.94085 +1.70771
4 −9.13513 −9.08181 −8.58062
6 +0.17763 −0.07220 −8.96406
8 +0.00613 −0.02263 +0.06225
10 +0.14424 +0.09846 −1.84632
12 −0.01792 −0.03190 −0.01005
14 −0.02118 +0.02758 −0.42501
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NORMAL MULTIPOLES AT r = r0 = 2.54 cm
WEDGE GAP 0.050 in – ARMCO steel laminations

LINEAR EXTRAPOLATION
Dipole Field in Tesla

Higher harmonics in relative units ×104

I = 502 A I = 4900 A I = 9417 A
J = 19.4525 A/cm2 J = 189.875 A/cm2 J = 364.909 A/cm2

pole
2 +0.09650 +0.92378 +1.67500
4 −17.8608 −17.8495 −16.9610
6 +0.12173 −0.11537 −7.95976
8 −0.07737 −0.03882 +0.08713
10 +0.06155 +0.02951 −1.70557
12 +0.06825 −0.04400 −0.03274
14 −0.08227 +0.00979 −0.32488

5 Conductor Positioning

It might be necessary in practice to slightly reposition the conductors relatively to the
magnet core in order to make room for insulation and cooling. Since the field quality is
dictated mostly by the core geometry and its saturation behavior, it is not expected to be
very sensitive to conductor position. Nevertheless, calculations have been performed
to verify the validity of this assertion. In the first case, all four conductors have been
moved vertically toward and horizontally away from the axis by 0.030 inch for each
pole. This is illustrated in figure 8. In the second case, only the top left conductor has
been displaced horizontally by 5.0 mm from its nominal position as shown in figure
9. Note that due to the breaking of both the left-right and top-bottom symmetries, all
multipoles are non-zero in that case.

As expected, the calculations confirm that moving the conductors does not result in
any significant degradation of the field quality.

NORMAL MULTIPOLES AT r = r0 = 2.54 cm
ARMCO steel laminations

LINEAR EXTRAPOLATION
Dipole Field in Tesla

Higher harmonics in relative units ×104

I = 4900 Amperes I = 9417 Amperes
J = 189.875 A/cm2 J = 364.909 A/cm2

pole no offset 0.03 in offset no offset 0.03 in offset
2 +0.961877 +0.961971 +1.734690 +1.734860
6 −0.000023 −0.000012 −0.016009 −0.016026
10 +0.000140 +0.000157 −0.002262 −0.002236
14 +0.000031 +0.000039 −0.000275 −0.000251
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Figure 8: All four conductors are moved vertically toward the axis and horizontally
away from the beam axis, symmetrically for each one of the four poles.
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Figure 9: Only the top leftmost conductor is displaced horizontally.
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NORMAL MULTIPOLES AT r = r0 = 2.54 cm
ARMCO steel laminations

LINEAR EXTRAPOLATION
Dipole field in Tesla

Higher harmonics in relative units ×104

I = 4900 Amperes I = 9417 Amperes
J = 189.875 A/cm2 J = 364.909 A/cm2

pole no offset 5 mm offset no offset 5 mm offset
2 +0.96190 +0.96190 +1.73400 +1.73400
4 −0.00197 +0.00404 −0.00003 +0.00060
6 −0.01616 −0.01462 −9.27340 −9.26750
8 −0.00102 +0.00181 −0.00296 −0.00819
10 +0.16124 +0.15844 −1.19781 −1.20473
12 +0.00158 −0.00410 −0.00106 +0.00037
14 +0.03011 +0.03763 −0.29752 −0.30150

SKEW MULTIPOLES AT r = r0 = 2.54 cm
ARMCO steel laminations

LINEAR EXTRAPOLATION
Normal dipole field in Tesla

Higher harmonics in relative units ×104

I = 4900 Amperes I = 9417 Amperes
J = 189.875 A/cm2 J = 364.909 A/cm2

pole no offset 5 mm offset no offset 5 mm offset
2 +0.00029 +0.00797 +0.00110 +0.03616
4 −0.00493 +0.00906 +0.00103 +0.03114
6 +0.00166 +0.00808 −0.00173 +0.01531
8 −0.00005 +0.00611 −0.00277 +0.01107
10 +0.00447 +0.00489 −0.00010 +0.00897
12 +0.00155 +0.00595 +0.00560 +0.00393
14 −0.00130 +0.00025 +0.00192 +0.00489
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