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Abstract

A longitudinal displacement of a dipole bend center will create
a closed orbit distortion in a synchrotron. The bend center of a dipole
or gradient magnet may be displaced from the mechanical center by
non-uniform distribution of the dipole field. This will be illustrated us-
ing data from a prototype Main Injector 8 GeV Line dipole prototype.
Orbit distortions due to magnet placement (survey) and magnet fabri-
cation (longitudinal gradient) errors are calculated for single magnets.
Effects of systematic errors on orbit dynamics will not be covered.
Magnet measurement options for characterizing these errors will be
discussed.

1 Introduction

For typical iron-dominated accelerator electromagnets, the longitudinal
center of the magnet is very near the mechanical center since the same
excitation is applied along the length by the coil, and the yoke geometry is
designed to provide a uniform cross section. For hybrid permanent magnet
assemblies, the same geometric arguments apply to the iron structures, but
the excitation is provided by magnetized material which may not be of
uniform strength. Variations of a few percent are possible due to material
differences. In addition, asymmetries which are ascribed to assembly order
effects which may produce non-uniform excitation of the remanent fields in
the iron pieces have been reported in the prototype efforts for the permanent
magnet 8 GeV transfer line to the Fermilab Main Injector. Example data
will be shown.!

In order to provide specifications for the hybrid permanent dipole and
gradient magnet design efforts which are underway at this time, calculations
which define the relation between longitudinal non-uniformities, placement
error, and orbit distortions will be reported here for single magnet errors.
Analytical results for the combined effects of random errors in multiple mag-
nets will be provided but systematic effects are also possible, including sev-
eral sets with different magnitudes and signs of systematic center offset.
Details of such calculations will be left for separate consideration. Effects
due to longitudinal displacement of the focusing of the gradient magnet are
also not covered here.

'!One might assume that the first order asymmetries could be eliminate by using a
symmetric assembly order: begin assembly at the center rather than at one end.
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2 Measured Data from Hybrid Permanent Dipole

Longitudinal Profile - PDD002-0

Hall Probe Measurements - Seq # 571836, 573176
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Figure 1: Magnetic field By(2) on axis of PDD002-0 as measured with Hall
Probe. Polynomial fit is to form and parameters shown in the table.

Let us begin by examining data from a hybrid permanent magnet dipole
constructed as a prototype for the Booster to Main Injector 8 GeV Transfer
Line project. Data for this magnet is shown in Figure 1 and we show fit
parameters for it in Table 1. We see that for this magnet the longitudinal
profile has significant nonuniformity. Among effects of this on beam dynam-
ics, the longitudinal asymmetry, which displaces the bend center from the
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n Cn Cn x (L/2)™
0 | 0.236881306 1 1
1| -1.1088e-05 | -4.6809e-05 | -2.4340e-03
2 | 2.36611e-06 | 9.9886e-06 | 2.7009e-02
3| -6.8111e-09 | -2.8753e-08 | -4.0429e-03
4| -6.1348e-10 | -2.5898e-09 | -1.8936e-02

Table 1: Fit Parameters for Longitudinal Shape of PDD002-0 as measured

with Hall Probe scan along the transverse centerline.
=3,Cn=0C0>, cn 2zis expressed in inches from the center of the

By(z)

Fit is to the form

magnet. 4th Column shows the fractional contribution of each term to the
field at the magnet end. Data is shown in the figure above.

geometric center is, perhaps, most important.

3 Closed Orbit Analysis

Deviations from the design orbit of a synchrotron are created by bending
fields which create angle changes, 6; distributed around the ring. In terms
of the standard accelerator formalism, one calculates the deviation d(s) at

the longitudinal location s from

va )%

2 sm 7r1/

cos(|¥; — ¥(s)| —7v)

(1)

where v, § and V¥ are the usual tune, amplitude function and phase function
for a strong focusing lattice, and 8; is the bend angle error at location ¢. We
examine the effect of dipole asymmetry and/or longitudinal displacement
by considering two bends, with angles # and —8 separated by a distance
L. Think of this as modeling a shift in magnet position by adding a bend
portion at the end toward which it is shifted and cancelling the other end

with the negative bend. Plugging this into the formula gives

d(s) =

where im and ¢p mark the locations of the minus and plus bends.
take the phase advance between these locations as ¥, = ¥, —

BimB(s)(—

6:)

2sin(7v)

(|‘I’zm

V()| —mv)+

2sin(7v)

lgzplg(s)ez

cos(|¥p—¥(s)| —7v)

(2)
If we
¥, and we



MI-0162 1.1 4/2/96 6

assume that it is small, we can simplify our result by substituting for ¥;,, in
Equation 2. We utilize the usual expansion for cos(4 — ¥q), apply the small
angle approximation for the terms in ¥y, and demand that 8;,, = Bi;p = 6,
which yields

d(s) = _VBiB(s)(%:) sin(|¥; — ¥(s)] —7v)¥,. (3)

2sin(7v)

Since we are considering only a short arc length (the length of one bending
magnet), we evaluate ¥g from the elementary definition, assuming only that
[ is constant over the magnet length.

B S+L 1 _£

VB(s)o:L .
d(s) = ———"—"—< v, - ¥ - . 5
(5) = = Y s s~ ¥(s)| —m) (5)
We observe that the magnet parameter which determines this closed orbit
error is 6; L.

4 Magnet Analysis

Having identified a parameter with dimensions of length which char-
acterizes the unwanted orbit distortion, let us evaluate it for the cases of
installation error and magnet asymmetry. If we define the body field, B,
of a dipole as some average of By(z) in the magnet body, we can define an
effective length by the relation

_ L/2
Blys= [ By(2)iz, (6)

We note that the bend angle created by a bending magnet is given by

_ L P ndp - Bless
o = (Bp) /—L/z Byle)de = (Bp) ()

where (Bp) is the magnetic rigidity of the particle (related to its momen-
tum). The angle error 6;, used in Equation 1 or 2, is given by the difference
between the field and the average field, B(z) — B. The distance over which
it acts is simply the distance from the center (mechanical) of the magnet,
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which we take as z. However, we wish to consider only the anti-symmetric
portion of this, B(z) — B(—z), which removes the term in B. Thus we
identify the parameter 6; L as follows:

/2
it = s [ (Bua) - By(-2))sds )

By re-ordering the limits of integration and substituting for(Bp) we have
L/2

o, = M
BLeff -L/2

By(2)zdz (9)

4.1 Magnet Displacement

We wish to evaluate 8; L for the case of a uniform dipole of length L displaced
by a distance éz. As described above, this is modeled by a pair of dipoles
of length 6z and strength TB separated by length L, which gives

) _
0,1 = —2L _BL6z= 0y 62 (10)
BLess

where we have taken L = L.fs which is quite precise for permanent magnets.
Note that this is the intuitive result for the displacement of the beam. It is
reduced by X2 in the closed orbit effect.

4.2 Magnet Longitudinal Uniformity

To relate this to the magnet uniformity requirements, let us express the
bend field as a polynomial in the distance from the magnet (mechanical)
center.

By(2) = B(1 +c1z+ caz® + 32 +--2). (11)
6;L 1 L/2
6z = == / By(2)zdz. (12)
OM BLeff -L/2
1 L/2
6z = / zdz(l—l—clz—l—c2zz—|—c9,z3—|— o). (13)
Legs J-L)2
1 01L3 03L5 01L2 03L4
_ = 14
2= 1., T 8o )=t t (14)
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If we consider only the ¢; term and we define AB as the end to end difference
in the magnet strength, we find AB/B = c; L. This then gives

_ABL

Note that we choose to leave this result in terms of a longitudinal displace-
ment of the magnet center, since that provides a useful description of the
important error possibilities.

5 Examples

The above formulas permit one to estimate closed orbit error created by a
single magnet error of a specified value. Let us observe these for generous
errors.

5.1 Magnet Displacement

Consider a 6 m Main Injector Dipole. It provides a bend of about 0.02
radians. Imagine that it has a longitudinal displacement of 25 mm. It occurs
with a § = 50 m in a lattice with fractional tune v = 0.4(sin7wv = .95). For
this case we calculate a beam displacement at the magnet using Equation 5.

620
2

d = 2.5 x 10 *m. (16)

If such an error were the sigma of the installation error for Np,., magnets,
and we multiply by \/Npmqeg we find an RMS orbit distortion of about 4 mm
before we properly average over the § values. Such a crude installation is
marginal. We will refuse to consider the effects of a systematic longitudinal
placement error.

5.2 Longitudinal Gradient

Let us consider a similarly gross error in the bend field of the Recycler
gradient magnets[1][2]. They are about 4 m long and produce the same
bend as the 6 m Main Injector dipoles. To have a magnetic center displaced
in z by 25 mm we would need a gradient which produces AB/B of 0.075.
This will create the same .25 mm single magnet error and is an unlikely
possibility.
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However, we can imagine creating systematic effects by either brick se-
lection or by assembly procedures which affect a whole design series in the
same way and perhaps related series with opposite signs. With 344 gradient
magnets contributing, if even 1/3 add coherently, we have a 25 mm distor-
tion. The possible combinations in which similarly built magnets can be
combined are large enough that reviewing all combinations would be oner-
ous. In lieu of that, let us set a sufficiently tight longitudinal uniformity
requirement and consider if it is a problem for the magnet builders. Con-
sider limiting the closed orbit error from this effect to 1 mm. Imagine that
all 344 dipoles conspire to each contribute coherently (which is not possible).
If each dipole contributes 3 x 10~® m of error, we will still meet our goal.

620

d=3x10"°= 5y (17)

This requires §z < 3 X 107* m (.3 mm). When interpreted as a longitudinal
gradient which is then expressed as a limit on the fractional end-to-end
difference it becomes

AB
= < 87 x 1073, (18)

Although it is possible that this could be easily achieved, if it is not inex-
pensive, then one will need to refine the estimate. It is clear, however, that
asymmetries of 2% are unlikely to be acceptable.

6 Determination of Longitudinal Centers

Several straightforward techniques can be used to determine the bend center
for dipole magnets. For gradient magnets, there are some complications for
each technique so we will review several possibilities.

6.1 POINTSCAN

The POINTSCAN measurement technique[3] has been developed at MTF to
provide a detailed field map on some coordinate grid. For production mea-
surements, the emphasis has traditionally been on producing a longitudinal
scan of bend magnets. Hall Probe/NMR Probe combinations have been
used for dipoles with good success. Recording the dipole field over a grid in
z permits direct evaluation of the bend center displacement in accordance
with Equation 12.
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For gradient magnets, a couple of additional complications are evident.
The transverse gradient (about 6% at 25 mm in the arc gradient magnets)
demands that a sufficiently careful transverse probe positioning mechanism
be provided. In addition, the use of NMR is precluded by the effects of the
transverse gradient on the NMR line width. It may be possible to use and
ESR (Electron Spin Resonance) or FMR (Ferrimagnetic Resonance) probe
but those are not available at this time. The precision required for this
center determination should be available from a Hall Probe. A disadvantage
of POINTSCAN is that setup and measurement times are not small.

6.2 Stretched Wire

The FLATCOIL measurement systems at MTF[4][5] have been adapted to
acquire data from stretched wire probes[6]. In particular, extensive work
has been done using a single stretched wire in Main Injector quadrupoles.
This system can be readily adapted to measure the longitudinal center of
dipoles. Again, additional complications apply to gradient magnets. We
will examine those issues here.

Consider a single wire stretched along the transverse centerline of a mag-
net with motors which control movement symmetrically placed near the
magnet ends. A flux measurement loop is created by attaching this wire to
a return wire which is stationary, either within or outside the magnet field.
One records flux changes at constant field level beginning with the wire cen-
tered at X=0 (horizonal center) at both ends of a dipole. Prescribe a motion
of the wire such that when the the x position of at one end (z = L/2) is
+X, the x position of the wire at the other end (z = —L/2) is -X. This will
cause the wire to fall along a line z = 2X z/L as a function of z. The change
in magnetic flux, ¢(X), as X is changed is given by

L/2 2Xz/L

$(X) = / dz/ dzB(z, ) (19)
~L/2 0

If B(z,z) is independent of x (good dipole field), then

2X pL/2

(X)) = - Ly dz zB(z) (20)

We observe that this is closely related to the definition of the longitudinal
magnetic center in Equation 12. We conclude that

#(X)=2BézX (21)
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and measurements at a series of X values will result in a straight line for
#(X) vs. X. BL is readily measured with a symmetric wire motion so §z/L
is determined directly.

The assumption that B(z,z) was independent of x is useful for a dipole
with good field quality. For the gradient magnets of the Recycler Ring, the
assumption ignores the design quadrupole and sextupole terms. To under-
stand the possibilities for measuring the longitudinal bend center of these
magnets with a stretched wire, let us assume that the field shape depen-
dance on z and z are separable. This is reasonable because the transverse
field shape is dominated by the iron geometry, which is expected to be quite
uniform in z while the longitudinal variation at the center line will be un-
affected by the transverse field shape. Let us define a field shape expansion
by

B(z,2) = B(2)(1 +ba(=) + ba(>)?) (22)

where a is the reference radius (usually 25 mm). Beginning again with
Equation 19 for the flux change measured by the stretched wire, we now
have

L/2 2Xz/L z z.,

dx)= [ @z [T daBE (D) + (P (28)

—L/2 0 a a
How is this related to the bend center displacement? We first perform the
z integration.

L/2 2X  bp2X% , b38X3 ,
W)= [ BTt L ) (20
2X [L/2 by 2X2% [L/2 , b3 8X3 L/?
¢(X) = T _L/2 dZB(Z)Z+;FLL/2 dZB(Z)Z +§3?L / dZB( )
(25)

We identify the first of these terms as the desired longitudinal center posi-
tion. Separating it from the 2nd and 3rd terms will rely on fitting the form
of $(X) vs. X. How large are these effects for the design field shape of
Recycler gradient magnets?

Using the longitudinal expansion in Equation 11, we find

L/2 L/2
/ dzB(z) 2% = B/ z + 122 + 22t + 32 ) (26)
_L)2 L/2

L/2 L2 4
/ d2B(2)* = BL(Z5 + cag) (27)
_L/g 80
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By =.1523 T | B = —.3774 T/m | B3 = —.6087 T/m?
by =1 by = 0.06294 b3 = —25.8 x 1074

Table 2: Design Specification for the Recycler Ring Defocusing Gradient
magnets (RGF) magnetic field properties.

L/2 _ rL/2
/ dzB(2)2® = BL/ dz(23 + c12* 4 ¢p2° + ¢32°) (28)
—L/2 -L/2

L/2 3 . L4 I8
dzB(2)2® = BL(c1 = + c3—— 29
/_L/z 2B(2)2 o TRRTY, (29)

Combining these results we find

2X by 2X2§L L? L* b3 8X3 L* L

X)= 2B+ 220 BL(E f o)+ 22 BL(ei o 4 ca
$X)= 7 BLéz+ Py BL(5 +eagg) + a3a BLergy + caggg)
(30)
Re-organizing terms we find
¢(X) 26z b2 L2 2 b3 L L3 3
-7 =—X+ =(1 —)X —(¢1— —)X". 1
5L = I X Tealtteaggg X tgzlogy tesgg) (31)

Using the result in Equation 14 and substituting in the X3 term we find

¢(X) 26z b2 L2 2 b3 66z 4[/3
5L~ I X Tea\l T g X + 325 Tesqs

Evaluating the parameters in Equation 32 for an X excursion of 25 mm

X3, (32)

and with a 4 m gradient magnet such as the RGD whose parameters are
shown in Table 2 we find that for a 6§z of .3 mm (see Section 5.2.) we would
have a flux, 2.25 x 1078 V-s for the first term in Equation 32. This is near
the noise limit for the existing Single Stretched Wire system[6]. The term in
X2 gives 266 x 107° so some care will be required to extract the linear term.
For this example, the term in X3 is small and the term in ¢y contributes
negligibly to the X? term. Linear and quadratic terms are comparable for
6z = 0.02 m. Of course, determining éz to an accuracy of 0.0003 m will
require survey or placement of the magnet to that precision in a reference
frame established by the stretched wire apparatus.

6.3 Rogowski Coil

If the magnet manufacturing process is well controlled and there is no expec-
tation of large asymmetries, it may be possible to monitor the longitudinal
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uniformity of the field by measuring the magnetic potential of the poles using
a Rogowski coil[7] at several points along the length. Even measurements
only at the two ends will provide some evidence of asymmetry if such asym-
metry exists. For magnets which produce 0.15 T fields, the construction of
a coil with sufficient sensitivity is not difficult.

7 Summary

We have obtained formulas for the closed orbit distortion due to longi-
tudinal displacement of magnet bend centers. The magnetic bend center
has been defined in terms of measured field and related to characteristics
of the gross field shape such as the longitudinal asymmetry. Measurement
techniques which can provide the required information have been identified.

7.1 Data from PDDO002-0 POINTSCAN Measurement

The data shown in Figure 1 were fit to the parameters shown in Table 1.
The longitudinal magnetic center was determined from this data. Points in
the central 86 inches were used (only for analysis convenience). The direct

integration produced a result as from Equation 12 of §z = —.0486 inches or
—1.2345 mm. When evaluated for the same range of z, Equation 14 gives
6z = —.0485 inches or —1.232 mm. We see that the 4th order polynomial

fit is adequate for these purposes. This is not important for the 8 GeV Line
application. A 4 m gradient magnet with similar longitudinal asymmetry
would have a larger 6z.

7.2 Conclusions

Since the effects which created the asymmetry in PDD002-0 are not under-
stood at this time, both accelerator requirements and magnet construction
effects will have to be studied. If the average 6z were of this size or larger,
it might impose re-alignment requirements during Recycler Ring commis-
sioning. Alternatively, the longitudinal magnetic center can be determined
by one of the measurement techniques discussed above and the required
mechanical offset applied during installation.
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