Octupolesfor differential chromaticity settingsin the Tevatron

Tangji Sen
Fermilab, MS 220
Batavia, IL 60510

April 23, 2002

1 Introduction

The proton lifetime at injection energy depends sensitively on the chromaticities. Too low a chromaticity setting
can make the beam unstable due to the weak head-tail instability. The anti-proton apparently does not suffer from
this instability - this may be attributed to the lower intensity. If the anti-proton chromaticity is too high however, the
lifetime suffers. A means to create a chromaticity split between the beams may therefore be useful. The existing
octupole circuits, which are not presently used, may be used for this purpose. In this note we will consider the
different families of octupoles which may be used.

There are 67 octupoles on 4 different circuits. Table 1 lists the name and number of each type of octupole.

Octupole Name | Number
TOZD 24
TOZF 12
TOF39S 7
TOD39S 8
TOF39C 8
TOD39C 8

Table 1: Octupoles in the Tevatron. (TOF39S, TOD39S) are on the same bus but the TOD39S are rotated by 45°,
thus reversing its polarity. Similarly (TOF39C, TOD39C).

Figure 1 shows the layout of the 4 families of octupoles in the Tevatron. A more detailed sketch showing the
spacing between the octupoles is in Figure 6 in Appendix A.

While using the octupoles for chromaticity adjustment, we need to ensure that they do not introduce undesirable
effects. The side effects of octupoles include: (i) second order chromaticity, (ii) additional coupling and (iii)
nonlinear effects which can be characterized by additional amplitude dependent tune shifts, resonances and perhaps
also interference with existing nonlinearities. We will choose the octupole families to minimize these effects.

2 Octupolesfor Chromaticity Correction

Sextupoles are used to correct the chromaticity created by the quadrupoles but the chromaticity is the same for
both protons and anti-protons. Sextupoles are used however to create a differential tune split between the beams
via feed-down of the different orbits. Similarly octupoles can be used to create chromaticity differences between
the two beams via feed-down of the orbit.

The field due to a octupole in terms of the multipole components (b3, as) is
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Figure 1: Layout of the octupoles in the Tevatron. The distribution of octupoles between AO and BO is identical
to that between DO and EOQ and similarly the distribution between C0 to DO and between EO to FO are identical. A
more detailed layout can be seen in Appendix A.

The multipole components b,, are related to the integrated strengths K,, L used in MAD as

n! 1 0"B
kn=K,L= b, L = Y 2.2
R gp (Bp) Oz" 22)
Closed orbit offsets Az, Ay result in feed-down normal and skew sextupoles
b/ S = 3 [b3Az — azAy], ol = 3 [bsAy + azAx] (2.3)
Rref Rref

Sextupoles at locations with non-zero dispersion (D, D,) act as quadrupoles for particles with non-zero relative
momentum deviation dp.

. 2 e 2
blff — }_z(szw —ayD,)d, , alff = E(b2Dy + a2D,)0, (2.4)
Hence the effective quadrupolar (normal and skew) strengths of normal octupoles are
. 6 e 6
b1ff = ﬁb3[DzA$ — DyAylé, , alff = §b3[DyA:E + Dy Ay)d, (2.5)

From the expression for the tune change due to a gradient error, it follows that the change in chromaticities due to
octupoles at locations with dispersion is

1
Va(cl) = i ;(ﬂwk3[DwA$ — DyAy));
1
V?Sl) = T (Byks[Dz Az — DyAyl); (2.6)



Octupole Family | (zco), (yeo) [MM] | (B2), (By) [M] | (Dz),(Dy) [m]
ZF -0.819,0.148 93.6,30.2 3.67,-0.02
ZD -0.271,0.136 30.5,92.5 2.07,-0.01
F39S 0.237,-1.023 101.1, 31.0 4.71,0.017
D39S 2.945,0.248 85.2, 29.4 4.76,0.054
F39C -0.175,0.438 88.1,30.9 3.12,0.011
D39C -1.645, -1.248 98.1,29.6 | 3.11,-8.7x10°°

Table 2: Average Twiss functions in the octupoles.

where
With all 4 octupole families energized, change in proton chromaticities are

i (p) = kszrSe(ZF,p) + k3, z20S.(ZD,p) + ks 305[S. (F39S,p) — S, (D395, p)]

+k3,300 S (F39C,p) — S, (D39C, p)] (2.7
vD®) = ks,zrSy(ZF,p) + ks, zpSy(ZD,p) + k3 305[Sy (F39S, p) — S, (D39S, p)]

+ks3,300[Sy (F39C, p) — Sy (D39C, p)] (2.8)

where e.g
1
Se(ZFp) = -3 BrjlDeda(p) = DyAy(p)];)zr (29)
J
1
Sy(ZF,p) = _E(Z By,i[DzAz(p) — DyAy(p)];)zr (2.10)
J

Here we have assumed that the D39S and D39C are rotated by 45° and have strengths opposite to F39S and
F39C respectively. The change in anti-proton chromaticities are given by similar expressions with the orbit offsets

(Az(p), Ay(p)) replaced by the offsets of the anti-protons (Az (), Ay(p)) in the octupoles. The changes in
chromaticities will be different in the two species because of their different orbits.

Figure 2 shows the closed orbits of the protons in the octupoles while Figure 3 shows the sum of the proton
and anti-proton orbits in each plane at all the quadrupoles. We note that due to the helical orbits, the protons and
anti-protons are roughly on opposite sides of the central axis of the octupoles.

In principle 4 families of octupoles required to correct all 4 quantities v (), v5" (p), &V (), 5" (p). In
practice, 2 families of octupoles suffice because of the anti-symmetry of the orbits

Az(p) =~ —=Az(p), Ay(p) = —Ay(p)

which imply that if 2 families are used to change the proton chromaticities, then
vV @) ~ =), YD B) & v (D) (2.11)

2.1 Effectiveness of Octupoles

We have a choice of octupole families to use. The minimum strengths are required when the families with the
largest value of the functions S,, Sy, defined above, are used. Table 2 shows the average Twiss functions in each
family. We note that only the ZD octupole family is near the D quadrupoles where the vertical beta functions are
larger than the horizontal beta functions. All others are next to F quadrupoles with larger horizontal beta functions.

The orbits change sign in the octupoles, as Figure 2 shows. Thus octupoles in the same family may not be in
phase with the helical orbit which may lead to opposing contributions from members in the family. This can be
corrected by choosing the polarity of each octupole such that all members of a family contribute with the same
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Figure 2: Horizontal and vertical closed orbit of protons at the locations of the 67 octupoles in the Tevatron.
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Figure 3: Sum of the proton and anti-proton closed orbits at the octupoles.



No Change Polarity change (if required)
((S2). () X 1072 | ({S4), (Sy)) x 10~2

ZF (-1.70, 0.65) (12.6,-4.13)
ZD (-0.10, 0.35) (-1.29, 4.0
F39S (0.82, -0.27) (8.9,-2.8)

D39S (oppos.) (10.7,-3.72) (-20.6,7.1)
F39C (3.03,-0.87) (13.3,-4.7)
D39C (oppos.) (-4.11, 1.25) (-8.2,2.5)

Table 3: Effective parameters (S,), (Sy) (defined in Equation (2.12)) of each family for two cases.

sign. Thus we define effective parameters for each family as, for example for ZF,

1

(Sz(ZF,p)) = 4rNsp Z(w]ﬂm[DmAx(p) - DyAy(p)])]
(S,2Fp) = — o S (BDeAs(p) - D, Ay(r)]); (212)

The weighting function w; = 1 if there is no change in polarity, otherwise w; = sign(D,Axz(p) — D,yAy(p))
when all octupoles in the family contribute in phase. Nz is the number of ZF octupoles and the sum extends
over all members of this family. Table 3 shows the effective parameters of each family for these two cases. It is
evident that choosing the polarity of the octupole according to the sign of D,Axz(p) — D,Ay(p) increases the
effectiveness of that family by an order of magnitude in most cases.

3 Second Order Chromaticity

Here we consider the second order chromaticity generated when we use octupoles to create a split in linear chro-
maticity between protons and anti-protons. The tune shifts of off-momentum particles with orbit offsets (Az, Ay)
in the octupoles are

1
Vg = Ezj:(ﬂml%[Dwa_DyAy])jép

1
T 4rm

vy (8,ks[ DAz — D, Ay));5, (3.1

J
The orbit offsets are composed of two parts: one due to the closed orbit determined by the separator settings and

the other due to dispersion
Az = Azgep + D36y, Ay = Aysep + Dydp (3.2

With the contribution from the dispersions alone written separately, the tune shifts to second order in J,, are,

Ve = 1o Y (Beke); {[DeBtey — DyByplty + (D3 — D232}, = 1t + 05, + 20257
J
vo= =g S(Buks); {[DeAa — DyAy))d, + (D2 = DS, =D + 05, + v 33)
J
This identifies the second chromaticity contribution from the octupoles
W = %;wmkgwi—Di])j
W= S 3bl02 - D3); (34



This expression does not depend on the orbit offsets, hence the second order chromaticity due to the octupoles will
be the same for both protons and anti-protons.

4 Detuning and resonance driving terms

The field due to an octupole is given by Equation (2.1). The change in the Hamiltonian due to the octupole field is

AH = §K3 0)[z* — 62°y* + y*] (4.1)
Here the independent variable is 6, R is the machine radius and the octupole strength parameter K5 is defined as
in Equation (2.2).
Introducing the action angle coordinates

T =/20J, cos ¢, , Yy = /2By Jycosdy (4.2)

The angles ¢, ¢, can be split into two parts, a periodic part «,,, o, and a part v, 4, which advances linearly with
the azimuth 6,

b = ag(0)+P.(0)
ay = T Vgl + ¢ (4.3)
zr — o ,Bm(sl) T z,0 .

Ve = 10

The distance s = Rf. Here we have included the initial phase ¢, o in the definition of the periodic part of the
phase a. Similarly o, and v, are defined.
Expanding the coordinates in terms of the actions and angles, the perturbation can be written as

AH = Z Z Un..m eilmaaotmyay] pilmeatmy iy
EX) Yy
ma=0,+2,44 m,=0,+2,+4
= Z Z Vm m ei[m2¢m+my¢y] (44)
Ty Yy

myp=0,42,+4 m,=0,+2,4+4
where

2
R _
Unemy, = 7K3(0) D Tody ™ Gmem 1 (B By) (45)
=0

Since Vi, imy = Umy,my, eilm=aa+myay] js periodic in 6, it can be expanded in a Fourier series,

oo 2 oo
_ E —1ipf :E 1 121 § : —ipl
me,my - mevmy?pe - Jwa Cmm,my,l;pe (46)
=0

p=—00 p=—00

and the perturbation is

AH =337 Wingamypelmeretmars o] (@)

Mg My P

Resonances are associated with the slowly varying terms in the Hamiltonian, i.e when the following conditions are
satisfied
Ap =mguy +myry —p K 1 (4.8)

Octupoles can drive the following six families of resonances,

2v, = p, 2uy =p (4.9
2uy + 2vy = p, 2, — 2y =p (4.10)
v, =p dvy =p (4.11)



From Equation (4.6) it follows that the coefficients W, ., are obtained by taking the inverse Fourier trans-
form of V;,., .m, . Hence it follows that the resonance driving terms are

R [* .
Crneymy lip = 74l dfK3 (e)gmm,mml(ﬂwa By) expli{ma bz + mydy — Apd}] (4.12)
*Jo

We will assume that we are close to a particular resonance specified by (m,,m,,p) so that A, < 1. We will
assume that the integral over the distribution of octupoles can be replaced by a discrete sum with the assumption
that the phases and beta functions are nearly constant over the length of a single octupole. The resonance driving
terms in a form suitable for numerical evaluation are

1 .
sz,my,l;p = ﬁ Z k3 (n)gmz,my,l (ﬂz,n; ﬂy,n) exp[z{mm¢m,n + my¢y,n - Apen}] (413)

where k3(n) = K3L, is the integrated strength of the nth octupole.
The non-zero driving terms associated with the octupoles are

Co2p = 5 4,2 n) expli(+2¢z,n — Apby)]

Conmrp = — 5o O ka(0)Ba ()5 (1) xpli(E26,m — Ay

Cosarp = —%Z’%(n)ﬁx(n)ﬂy(n) expli(£205n — Ay00)]

Cosany = MZ n) expli(£26, 0 — Ayfy)]

Ciremp = —ga- 4,2 (n) expli(+£262,n + 26y,n — Apfn)]

Craozp = 127 4,2 n) expli(+4¢sn — Apby)]

Costop = 4,2 n) expli(£4¢y,n = Apfn)] (4.14)

The detuning is determined by the zeroth harmonic part of the perturbed Hamiltonian

AH(my =0,my =0)=> JoJ2™" 3" Conymy.tszp exp(—iph) (4.15)
l

p=—o00

The change in tunes are found from:
Av, = — /dﬁiAH(mz =0,my =0) =Y 1CoonoJi " )™
2 aJ, Y p vy

Av, = / da—AH =0,m, =0) = Z(z —1)CoonoJLJ, " (4.16)
!

The coefficients are

1 3
Coooo = m 2 z ks(n) 5,
Cooo = —65— 4' Z k3(n)Be,nBy,n
Coo2o = 27r4‘ 3 Z k3(n (4.17)



Hence the action dependent tune shifts are

1 2
Av, = m—WJmZ@(n) o B JZkg 1) Bz, By.n

Av, = ——J Zk3 1) Be.nBym + 167TJka3(n) 2 (4.18)

The resonant condition is satisfied when
mw(Vac,O + AV:C) + my(Vy,U + AV!/) =p

where (v, vy,0) are the bare tunes. This defines a family of resonant actions (J;,es, Jy,res) Which lie on the
lines defined by

[Z k3 ﬂz n mz/Bz n 2my13y n J + [Z k3 By n(myﬂy n 2mwﬂz,n)]‘]y = 167T(p —MgVg,0— myVyyo)
(4.19)

5 Select Resultson Octupole Families

All possible combinations of two family solutions (six in all), three family solutions (four in all) and the single four
family solution have been examined and with all possible choices of polarities (no change or a change according to
the sign of D Az(p) — D, Ay(p) in a octupole). The results are tabulated in Appendix B. Here in this section we
choose to show only those solutions which require low octupole strengths and may therefore be practical. We will
also assume (perhaps somewhat confusingly) that the D39S and D39C octupoles are not rotated by 45° so that the
decision on whether to change polarity or not according to the sign of D, Axz(p) — D,Ay(p) is based with respect
to the un-rotated configuration.

Table 2 in Section 2 shows that only the ZD family of octupoles is at locations where the vertical beta functions
are large. This is also the family with the largest number of octupoles. Hence this family must be essential in any
scheme where two or more families are used to create the chromaticity split.

In addition to the strengths required to create the desired chromaticity split, we also look at the second order
chromaticities, detuning with amplitude and resonance driving terms. While the second order chromaticity and
resonance driving terms are always required to be small, the tune spread may be required to be small or large
depending on the purpose. If the concern is that the additional tune spread created will cause the beam distribution
to span some resonances, then clearly a small value is better. If however the intent is to stabilize the beam against
collective effects due to impedances, then a larger tune spread is required. For this reason we have included
possible choices with 3 families of octupoles, since these lead to somewhat different tune spreads than the 2 family
solutions.

We define the detuning coefficients as

O0Av, 1

Coz = a7, = =~ 16n [ 3,ZF anﬂwn ZF+]€3395 anﬂxn 395 + . ] (5.1)
0Av, OAv 1

C:L‘y = ajy = ajwy — _8_71' I:k3,ZF(Z wn/Bw,n/By,n)ZF + k&ggs(Z wnﬂw’nﬂy’n)ggs + ... (52)
0Av 1

ny 6Jyy 16 [ 3,ZF Z UJnﬂy n)ZF + k3 398 Z wnﬂy n)39s + . ] (5.3)

These coefficients will be shown as well the tune shifts at three representative amplitudes.

Figures 4 and 5 show the tune footprints of protons and anti-protons with and without octupoles. The octupole
strengths were chosen to generate a tune spread and did not involve any changes in polarity. Without octupoles the
horizontal tune spread for anti-protons (about 7E-3) is larger than for protons. This larger spread should help to
stabilize the anti-protons against instabilities at injection. With the octupole strengths chosen, we observe that the
vertical tune spread of both species increases while the horizontal tune spread shrinks.

In the following we calculate the octupole strengths required to create the desired chromaticity splits. The
relevant parameters for the calculations are shown in Table 4. Tables 5, 6 and 7 show the octupole strengths,
detuning and tune shifts and the resonance driving terms respectively for those select cases where the octupole
strengths are small.
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Figure 4: Left: Footprints of the proton beam with and without octupoles. Octupole settings were k3 (ZF) = 5,
k3(ZD) = 3. Right: Footprints of anti-protons with the same octupole strengths.
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Figure 5: Left: Footprints of the proton and anti-proton beams without octupoles. Right: Footprints with octupoles.
Octupole strengths were the same as above.

Energy [GeV] 150
Linear tune 20.585, 20.576
Linear lattice chromaticity w/out octupoles 15.04, 14.96
Desired change in proton chromaticities yél), ygsl) +5, +5

Table 4: Relevant parameters used in calculating octupole strengths. The lattice parameters were extracted from a
MAD lattice file for the Tevatron (ca. August 2001).



Case || Families | k3(ZF) | k3(ZD) | k3(395) | k3(390) [| (17, 157) x 10
2 Families
21 | zF(pc) & ZD(pc) | 489 | 775 | 0 | 0 || (179,-1.70)
22 || zD(pc) & 395 0 7.94 -9.35 0 (0.39, -1.37)
2.3 || zD(pc) & 39S (pc) 0 7.84 3.27 0 (0.44, -1.24)
24 | zD(pc) & 39C 0 7.49 0 12.82 (0.31, -1.25)
25 | zD(pc) & 39C (pc) 0 7.79 0 4.30 (0.39, -1.27)
3 Families
31 | zF(pc),ZD(pc) &39S | 564 | 772 | 143 | 0 || (2.01,-1.75)
3.2 ZF(pc), ZD(pc) & 39S(pc) | 1129 | 7.64 | -427 | 0 | (356,-2.29)
33 | zF(pc),ZD(pc)&39C | 176 | 758 | 0 | 82L || (0.84,-1.41)
34 | ZD(pc),39S(pc)&39C | 0 | 765 | 149 | 700 | (0.37,-1.25)

Table 5: Integrated octupole strengths required to create the chromaticity split in different cases. The abbreviation
pc denotes a polarity change according to D,Az(p) — D,Ay(p). The proton chromaticities were corrected to
+5 units, the resulting anti-proton chromaticities were found to be close to -5 units in each case. The last column
shows the 29 order chromaticities.

Case || Families (Crz, Coy, Cyy) x10* (Avgy, Avy)x1073
(6,0) o | 0,6) 0 | 6,6)0
2 Families
2.1 | ZF(pc) & ZD(pc) | (138,-275,327) | 3.88,-7.75 | -7.75,9.22 | -3.87,1.47
2.2 || ZD(pc) & 39S (0.11,-2.07,3.25) | 0.30,-5.84 | -5.84,9.15 | -5.54,3.31
23 || ZD(pc) & 39S (pc) (0.44,-2.14,3.20) | 1.23,-6.02 | -6.02,9.01 | -4.79,2.99
24 ZD(pc) & 39C (-0.047, -1.95, 3.08) -0.13,-5.48 | -5.48,8.66 | -5.61,3.18
25 | zD(pc) & 39C (pc) (0.22,-2.08,3.19) | 0.62,-5.85 | -5.85,8.98 | -5.23, 3.13
3 Families
31 | ZF(pc),ZD(pc) &39S | (L57,-2.86,3.28) | 4.43,-8.04 | -8.04,9.23 | -3.62,1.19
3.2 || ZF(pc), ZD(pc) & 39S(pc) |  (2.61,-3.56,3.37) | 7.33,-10.00 | -10.00,9.48 | -2.68,-0.52
33 | ZF(pc), ZD(pc)&39C | (0.47,-2.24,315) | 1.31,-6.30 | -6.30,8.86 | -4.99,2.56
34 || ZD(pc), 39S(pc) &39C | (0.17,-2.03,3.13) | 2.28,-6.40 | -6.40,9.26 | -4.21,2.86

Table 6: Detuning with amplitude and tune shifts at three amplitudes due to octupole strengths shown in Table 5.
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Case || Families 2nd order resonance driving terms (x 10?)
Ca02;41 Chot;41 Co21;41 Co20;41
(cosine, sine) | (cosine, sine) | (cosine, sine) | (cosine, sine)
2 Families
2.1 ZF(pc) & ZD(pc) (2.60,-1.44) | (5.32,0.45) | (1.39,7.52) | (-2.01,-1.04)
2.2 ZD(pc) & 39S (5.83,-74.2) | (-0.012,71.3) | (-33.5,67.8) | (2.00,-7.50)
2.3 ZD(pc) & 39S (pc) (-3.74,25.6) | (9.83,-25.6) | (16.2,-16.0) | (-3.46,1.54)
24 ZD(pc) & 39C (-111.,-3.83) | (113, 3.09) (98.8,52.2) | (-12.3,-5.88)
25 ZD(pc) & 39C (pc) (-38.1,-1.49) | (43.0,0.73) (35.4,21.4) | (-5.51,-2.51)
3 Families
3.1 ZF(pc), ZD(pc) & 39S (2.11,9.71) | (6.13,-10.4) | (6.74,-1.70) | (-2.62,-0.052)
3.2 ZF(pc), ZD(pc) & 39S(pc) | (10.9,-36.7) | (-0.58,34.4) | (-18.0,38.2) | (-0.109, -4.42)
3.3 ZF(pc), ZD(pc)& 39C | (36.9,-0.71) | (-27.4,-0.35) | (-28.0,-6.0) | (1.11,0.42)
34 ZD(pc), 39S(pc) & 39C | (70.7,46.0) | (-62.1,-45.5) | (-41.1,-63.3) | (2.70,6.70)
Case || Families 4th order resonance driving terms (x 10?)
0221;82 02—21;0 0402;82 0042;82
(cosine, sine) | (cosine, sine) | (cosine, sine) | (cosine, sine)
2 Families
2.1 ZF(pc) & ZD(pc) (-0.96,3.74) | (-57.1,35.9) | (-0.31,-0.43) | (1.56,-1.00)
2.2 ZD(pc) & 39S (-0.34,0.65) | (-40.5,31.9) | (0.89,1.99) (1.52,-1.02)
2.3 ZD(pc)& 39S (pc) (-1.61,3.43) | (-43.0,30.4) | (-0.34,-0.88) | (1.59,-0.92)
24 ZD(pc) & 39C (1.42,0.62) | (-37.4,31.1) | (-2.29,0.79) | (1.38,-0.71)
25 ZD(pc)& 39C (pc) (-0.38,2.03) | (-41.0,31.1) | (-0.78,0.17) | (1.52,-0.87)
3 Families
3.1 ZF(pc), ZD(pc)& 39S (-1.06,4.22) | (-59.6,36.5) | (-0.49,-0.80) | (1.57,-1.00)
3.2 ZF(pc), ZD(pc)& 39S(pc) | (-0.12,4.15) | (-75.5,43.1) | (-0.27,0.17) | (1.52,-1.10)
3.3 ZF(pc), ZD(pc)& 39C | (-1.68,4.69) | (-63.1,37.3) | (0.29,-0.80) | (1.62,-1.09)
3.4 ZD(pc), 39S(pc) &39C | (-3.71,5.39) | (-46.9,29.9) | (1.01,-2.05) | (1.74,-1.07)

Table 7: 2nd and 4th order resonance driving terms due to octupoles with strengths shown in Table 5.
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Ranking by case
Strengths
2 family solutions (2.1,2.3,2.5) | (2.2, 2.4)
3 family solutions 31|(3.3,34)|32
274 order chromaticities
e (2.4,3.4,2.2,25,23,33)| (2.1,3.1,3.2)
v (2.3,2.4,3.4,25,2.2,33) | (2.1,3.1,3.2)
Detuning with amplitude
Cox (2.4,2.2,34,25,23,3.3) | (2.1,3.1,3.2)
Cay, Cyy All are comparable
224 order resonances
2v, 21]3.1(2.3,3.3,3.2,25)|(2.2,2.4,3.4)
2, (3.1,2.1) | (2.3,3.3) ] (25,3.2) | (3.4,2.2) | 2.4
4*h order resonances
2v, + 2u, 2.2](24,25)](2.1,2.3)| (3.2,3.1)| 3.3| 3.4
2w, — 2u, 2.4((25,22,2.3)34](2.1,3.1)|3.3| 3.2
4v, (3.2,2.1) | (2.5,3.3,3.1,2.3) | (2.2, 3.4, 2.4)
4v, All are comparable

Table 8: Comparison of 2 and 3 family solutions by case. The corresponding families for the different cases are
shown in Table 5. The rankings are shown in increasing order of the parameter, e.g. Case 2.1 requires the lowest
strengths and 2.4 the largest strengths amongst the 2 family solutions. Families that are comparable are included
within brackets while those solutions that differ significantly are separated by vertical bars.

We observe that the 3 family solutions require somewhat larger strengths than the 2 family solutions. In
general the 3 family solutions create a larger horizontal detuning (C,,) while the cross-detuning C,,, and the
vertical detuning C, are comparable. The driving terms of the one dimensional resonances 2v,, 2v,, 4v,, and
4v, do not help to distinguish between the 2 and 3 family solutions. The 2v,, + 2v, resonance driving terms are
mostly smaller with the 2 family solutions. These observations can be quantified for each figure of merit. Table 8
shows the ranking of the different solutions.

6 Summary

We found solutions using 2 and 3 families of octupoles to create chromaticity splits of 10 units in each plane
between the protons and anti-protons. All solutions with moderate octupole strengths require that the polarity of
each octupole be chosen according to the sign of D,Ax(p) — D,Ay(p) in that octupole. Solutions without any
change in polarity require very large octupole strengths to create the required chromaticity splits.

Along with the chromaticity split, we also examined other figures of merit including the second order chro-
maticity generated, the detuning with amplitude and the strengths of 2nd and 4th order resonance driving terms.

We find that the ZD family of octupoles is needed in any solution. Possible 2 family combinations are (ZD,
ZF), (ZD, 39S), (ZD, 39C) with the first combination most likely to be the best. If a large horizontal detuning is
required, then the 3 family solution (ZD, ZF and 39S) would be most effective.
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A Appendix: Layout of all octupoles
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Figure 6: Sketch of all the 67 octupoles in the Tevatron with distances between them. Note that only the ZD
octupoles are near D quadrupoles, all others are next to F quadrupoles.
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B Appendix: Resultswith all families

The proton chromaticities are corrected to +5 units in each case. In the tables below, N/A indicates that the octupole
strengths ks exceed 100 units.

B.1 2Families
1. ZF and ZD
Polarity Change | k3(ZF) | k3(ZD) | v.(p),v, (D)
None -35.54 92.33 -4.56, -4.21
ZF 4.71 86.94 -5.23,-4.05
ZD -37.05 8.25 -4.22,-5.19
ZF & ZD 4.89 7.75 -4.94, -4.96
2. ZD and 39S
Polarity Change k3(ZD) | k3(39S) || vy(P), v, (D)
None 89.00 -8.98 -4.89, -4.13
ZD 7.94 -9.35 -4.58, -5.07
39S 87.89 3.14 -5.20, -4.05
ZD & 39S 7.84 3.27 -4.90, -4.97
ZD & 39S (D39S oppos.) | 8.07 -7.35 || -4.96,-4.96

“D39S oppos.” implies that the polarity of D39S is chosen opposite to the sign of D, Az(p) — D, Ay(p) in that
family, assuming that the D39S octupoles are not rotated by 45°. If they are rotated by this angle, then the sign
convention would reverse meaning, i.e. “D39S oppos.” would imply that the polarity of a D39S octupole has the
same sign as D, Az(p) — D,Ay(p) in that octupole.

3. ZD and 39C
Polarity Change k3(ZD) | k3(39C) || v, (p),v,(P)
None 84.10 12.34 -5.05,-4.14
ZD 7.49 12.82 -4.76, -5.02
39C 87.35 4.14 -1.26,-5.48
ZD & 39C 7.79 4.30 -0.81, -6.45
ZD & 39C (D39C oppos.) |  8.56 18.46 | 16.35,-12.19

4. 39S and 39C

Polarity Change k3(395) | k3(39C) || vi(p), v, (P)
None N/A
39S N/A
39C N/A
39S (D39S oppos.) N/A
39C (D39C oppos.) N/A
39S & 39C N/A
39S & 39C (D39C oppos.) N/A
5. ZF and 39C
Polarity Change ks(ZF) | ks(390) || v. (D), v, (p)
None N/A
ZF N/A
39C N/A
ZF & 39C N/A
39C (D39C oppos.) N/A
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6. ZF and 39S

Polarity Change

ks(ZF) | k3(39C) || v,(p),v,(p)

None

ZF

39S

ZF & 39S

ZF & 39S(D39S oppos.)

N/A
N/A
N/A
N/A
N/A

B.2 3 Families
1. ZF, ZD and 39S

Polarity Change

None

ZF

(@ zD

(b) ZD

39S

(@) ZF & zD

(b) ZF & zD

(@) ZF, ZD & 39S
(b) ZF, ZD & 39S

ZF, ZD & 39S (D39S oppos.)

ks(ZF) | k3(ZD) | k3(395) || v;(p), v, (p)
11.91 87.89 -11.99 -5.0,-4.10
1.51 88.34 -6.10 -5.0,-4.10
43.93 7.58 -20.44 -5.0,-4.92
21.08 17.77 -14.67 -4.78,-5.0
-10.95 89.26 2.18 -5.0,-4.10
5.64 7.72 1.43 -5.0,-4.94
3.11 7.82 -3.42 -4.81,-5.0
11.29 7.64 -4.27 -5.0,-4.94
-10.15 8.02 10.06 -4.81,-5.0
-14.22 9.00 -28.71 -5.0,-4.97

2. ZF, ZD and 39C

Polarity Change

None

(@) ZF

ZD

39C

(@) ZF & zD
(b) ZF & zD
ZF, ZD & 39C

ZF, ZD & 39C (D39C oppos.)

ks(ZF) | ks(ZD) | ks(39C) || v;(p),v,(P)
-3.37 84.88 11.17 -5.0,-4.14
-1.15 83.40 15.37 -5.0,-4.16
4.93 7.39 14.52 -4.83,-5.0
-40.28 93.0 -0.55 -5.0,-4.04
6.37 7.83 -3.87 -5.0,-4.94
1.76 7.58 8.21 -4.83,-5.0
4.96 7.75 -0.058 -5.0,-4.94
491 7.75 -0.049 -5.0,-4.94

3. ZD, 39S and 39C

v (p), v, (P)

Polarity Change k3(ZD) | k3(39S) | k3(39C)
None 85.54 -2.64 8.71
ZD 1.27 4.47 18.95
39S 82.93 -0.97 16.14
39C 89.06 -9.26 -0.13
(a) ZD, 39S 8.08 5.54 -8.90
(b) ZD, 39S 7.65 1.49 7.00
(a) ZD & 39S (D39S oppos.) 8.19 -8.89 -2.68
(b) ZD & 39S (D39S oppos.) 7.71 -2.74 8.04
(@) ZD & 39C 7.96 -10.40 -0.48
(b) ZD & 39C 7.95 -9.82 -0.22
(2)ZD & 39C (D39C oppos.) 7.93 -9.54 -0.37
(b) ZD & 39C (D39C oppos.) 7.94 -9.44 -0.18
ZD, 39S, 39C 7.84 3.35 -0.010
ZD, 39S(D39S oppos.) & 39C (D39C oppos.) 8.07 -7.37 -0.036

-5.0,-4.13
-4.84,-5.0
-5.0,-4.16
-5.0,-4.09
-5.0,-4.94
-4.82,-5.0
-5.0,-4.95
-4.83,5.0
-5.0,-4.91
-4.77,-5.0
-5.0,-4.93
-4.78,-5.0
-5.0,-4.94
-5.0,-4.95
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4. ZF, 39S and 39C

Polarity Change ks(ZF) | ks(395) | ks(390) | vi(p), v, (P)
None N/A
ZF N/A
39S N/A
39C N/A
ZF, 39S N/A
ZF, 39S (D39S oppos.) N/A
ZF, 39C N/A
ZF, 39C(D39C oppos.) N/A
ZF, 39S & 39C N/A
ZF, 39S(D39S oppos.), 39C(D39C oppos.) N/A
B.3 4 Families
Polarity Change ks(ZF) | ks(ZD) | ks(395) | k3(39C)
None N/A
ZF N/A
ZD -50.72 | 6.07 | 5053 | 64.55
39S N/A
39C N/A
ZF & ZD N/A
ZF, ZD & 39S N/A
ZF, ZD & 39S (D39S oppos.) -37.26 10.32 -60.84 4.33
ZF, ZD & 39C 16.98 7.24 25.19 0.97
ZF, ZD & 39C (D39C oppos.) 24.35 7.03 37.79 1.23
ZF, ZD, 39S, 39C N/A
ZF, ZD, 39S(D39S oppos.), 39C (D39C oppos.) -30.54 | 1040 | -60.71 | 0.054
ZF, ZD(ZD oppos.), 39S(D39S oppos.), 39C(D39C oppos.) N/A
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