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Abstract

As final designs are prepared for the Fermilab Recycler Ring,
specifications for longitudinal uniformity of the gradient magnets are
required. We will use a simple analytic model of the design field shapes,
orbit shape, and the lattice 8 function to explore the interaction of
various specifications with the nominal design features of the lattice
and magnets.

1 Introduction

The nominal design of the Recycler Ring[1] uses gradient magnets for
bending and most of the focusing in the ring. They are specified as straight
(rectangular) magnets with a uniform dipole, quadrupole and sextupole
component along the length. Steve Holmes has explored|2][3] issues con-
cerned with the interaction between the specifications for straight magnets
and the curved particle orbit which will be experienced in the Recycler.
Measurements of the longitudinal uniformity of PDD 8 GeV line dipoles
have been reported[4] and indicate that the non-uniformity approaches 25%
for the strength tuning procedure used for producing those dipoles. It was
shown previously[5] that the bend center changes expected for a 1% non-
uniformity might not be unimportant. This larger non-uniformity raises
additional issues. In this document we will extend these considerations to
very non-uniform longitudinal fields, taking into account the curved orbit in
a straight dipole.

The design features of the gradient magnet and the orbit can be quite
precisely represented by polynomial expressions. If we adopt a polynomial
expansion for the longitudinal non-uniformity, an analytic solution is readily
available and can be manipulated to provide insight into appropriate design
specifications for the magnets. Our strategy is to examine the resulting
expressions, applying numerical constraints from the current design so that
both qualitative and quantitative understanding of the important limits can
be obtained.

Since the effects are sufficiently important that measurements are re-
quired, we will also derive forms for suitably presenting the measured re-
sults. Moments of the z profile (weighted integrals) will take full advantage
of the information measured while minimizing potential limitations of the
measurement. We will define moments and the most suitable variables for
presenting the moment results. Effects from the moments on machine prop-
erties will be evaluated.
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2 Mathematical Description

2.1 A Polynomial Description of Fields and Focusing

We obtain an explicit polynomial description of the lattice and magnets in
the following way.

e Since the magnet design is for a straight hybrid permanet gradient
magnet, the normalized harmonics of the design field are uniform along
the length (neglecting small end effects).

B,(x) = Bo(1+ b +b3(5)?) (1)

where a is the reference (normalization) radius for the harmonic rep-
resentation of the fields.

e The pole potential and thereby the fields may experience a longitudinal
modulation due to non-uniform placement of ferrite drive material such
as reported for the PDD dipoles[4]. The realistic field shape for this
construction technique decomposes naturally (and to good accuracy)
into terms which independently depend upon x and z. To illustrate,
let us use a quadratic dependence on z.

x T\ g 2z 229
By(w,2) = Bo(L+ba— +b3(=)") (1 + ap + a1 () + az(+)7)  (2)
a a L L
where «q is selected so that By has the value for the uniform-in-z
design (i.e. the same for Equations 1 and 2).

e The 8 function of the ring is quite smooth and over the length of a
magnet can be very adequately represented by a polynomial.

G 2z G’ 2z
B(2) = Bmia(1 + 53— () + 35— (7)) (3)
ﬁ(z) = ﬁmid(l + ﬁsl(QL_z) + ﬂcurv(QL_z)2) (4)

e As was shown in MI-0195[2], the orbit is still adequately represented by
a polynomial, since the deviation from a circlular orbit is small. The
“natural” description for the closed orbit thru a curved dipole would
describe x as x(s) = Zof fset, Where s is the parameter which identifies
the coordinate along the (curved) orbit. For a straight dipole, if z is
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a rectilinear coordinate, the “maximal aperture” orbit might appear
to be = d(0.5 — (%2)?). However, the natural orbit to consider
for a gradient magnet is one offset with respect to the center of the
rectangular magnet geometry such that the bend will be independent
of the quadrupole term. This is the orbit! z = d(3 — (%)?). We will
consider the more general orbit

1 2z
T = Tof fset + Lslope” + d(g - (3)2) (5)
We expect to make xgope = 0 by suitable demands on the bend

achieved and the global orbit distortions considered. By assumption
for these magnets, the sagitta is unaffected by the deviations from a
non-uniform field, and is given, in the small angle approximation, by

_Re 1

d:R(l—cos(Q)) 3 5

: (6)

2.2 Properties to Examine

With this description of the hardware, we wish to explore a number of
properties of the lattice and orbits which will be modified by symmetric and
asymmetric non-uniformities of the magnets. We will calculate the following
properties.

e The bend angle, 0, required in the regular cells of the Main Injector
by dipoles or in the Recycler gradient magnets is 27 /(301 1/3) (the
angle required for the dispersion suppressor cells is 2/3 of that angle).
For a magnetic rigidity of Bp we have

L/
(Bp) 0 = /_ L; B(z, 2)dz (7)

where L is the magnet length and we have neglected the extra path
length associated with the curvature. Note that z is referred to the
mechanical center of the magnet. The design value for (Bp) for the
Recycler is 29.6501 T-m. We will adjust parameters for each non-
uniformity we consider to preserve the design value for the bend. We

'Observe that for a straight uniform dipole, f Bdz = BoL. For a gradient magnet we

have f Bdz = —LL/iQ Bo(1 4 bex)dz. We demand that this also integrate to BoL over the

orbit. A particle orbit with an offset of 1/3 of the sagitta satisfies this requirement.
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will define By as in Equation 2 such that it has the value it would
assume in a uniform curved dipole. It assumes the same value, to first
order?, in a straight dipole: ByL = (Bp)#.

e As shown in MI-0162[5], the parameter which establishes orbit distor-
tions due to bend center displacement is

L)2

(Bp) §(6L) = /_ L 2B 2 (8)

We will calculate 0(6L) to understand magnet placement and/or orbit
distortion implications for each non-uniformity considered.

e The tune of the machine will be modified if there are changes in the
phase advance due to modification of the gradient distribution pro-
vided by each gradient magnet. We will calculate the tune change
across a modified (longitudinally non-uniform) gradient magnet, as-
suming that the § function is unmodified. We begin with Equa-
tion 3.151 from Page 95 of Edwards and Syphers|6]

1 [AEB),
5”‘%% Ty (9)

where ((s) is the design (unmodified) focusing function, and B’ is the
gradient error. We will calculate the tune change for various magnet
errors by examining this integral. We will then separately consider
effect due to systematic and random combinations of such errors. Be-
ginning with Equation 2, for a non-uniform gradient magnet we find

ENA+ao+ () +ar(2)?)  (10)

by b3
B'(z,2) = Bo(— + =
(z,2) o a a'a L
Equation 9 has been derived for error terms, so we must be judicious in
our interpretations. However, since dv is linear in B’, we can calculate
the integrals and then consider separately the terms of interest as
perturbations on the net result.

2For completeness, we note that the path length difference between the straight line
used for measurement and the circular orbit is s = R — R(2sin £) ~ L§? /24 = 7.333 x
1075m or 16.7 ppm for the regular cell gradient magnets in the Recycler
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2.3 Numerical Values of Design Properties

To arrive at realistic values for the contributions of various effects, we will
examine various results in light of the design values of the magnet and
accelerator properties. For the sake of using widely available documented
values, we would employ the design in the “The Fermilab Recycler Ring
Technical Design Report”[1], but a x2 error exists in the specified sextupole
field. We choose to instead specify an assumed design in Table 1.

Magnet | Length By By ba Bs bs
Name m | Tesla T/m @1” | T/m? Q1”
RGF 4.4958 | 0.1375 | 0.3414 | 0.0631 | 0.1713 | 8.0353e-04
RGD 4.4958 | 0.1375 | 0-.3296 | -0.0609 | -0.2879 | -1.3508e-03
RGS 2.9972 | 0.1375 | 0.7457 | 0.1377 | 0.0000 0.0000

Table 1: A Current Set of Design Properties of Gradient Magnets for the
Recycler Ring. These are for Lattice RRV11. Normalized harmonics are
quoted at a reference radius of 1”.

3 Calculations

3.1 Offset in Longitudinally Uniform Gradient with Sextupole

We begin by re-establishing some results previously obtained by Holmes. In
a gradient magnet, we will achieve the required bend by selecting a suitable
offset. As discussed above, an offset of d/3 provides a position which makes
the bend independent of the gradient. With the sextupole which has been
designed into the recycler gradient magnets, this result is modified slightly.
If we describe the orbit as in Equation 5, and we describe the design field
by Equation 1, we can set ffﬁQ B(z)dz = BypL and solve, as above, for a
value of . fset Which imposes the same bend as for a uniform dipole.

—aby + \/(ab2)2 — (16/45)82 4 b "
2b3 45 aby

Lof fset =

which yields values of —6.1191 x 107 m (—10.658410~% m) for RGF (RGD)
magnets respectively (taking the small offset solution).
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3.2 Parameters for a Longitudinal Non-Uniformity

If we consider Equation 2 to describe the magnetic field, we will wish to
constrain the parameters to preserve, as far as possible, a relatively simple
description of the error terms. We included the term o so that the correct
bend could be obtained without modifying By. For a non-uniform dipole,
we will solve the equation

L/2

B()L:/ / dz B0(1+a0+a1(2—z)+a2(2—z)2). (12)

—L/2 L L
Since we have aq,a1,and as which are dimensionless, we find, upon solving
this equation, ap = —ag/3. We interpret this to say that if the quadratic
term decreases the field at the ends by 15%, the central field must be en-
hanced by 5% to maintain the same integral and the apparent non-uniformity
which is observed for this would be 20%.

3.3 Bend Effects of Longitudinal Non-Uniformity

We consider the effects of a longitudinal non-uniformity on the bending
properties of the gradient magnets by integrating the field of Equation 2 on
the orbit described by Equation 5, with x4ope = 0. Our result is

L/2 40&2b2d 4b3 d 160&2[)3 d
dz B = BoL(l— —==2— 4 —22(2)2 4 =22 (2)2
/_L/2 @ Bla,2) o 45a 45 (a) + 945 (a)
b2xoffset 8a2b3dxoffset Lof fset2
— bs(—=—)7). (13
+ a 45a2 + s a ))- (13)

We note that the dependance on «; has dropped from the equation. The
terms which depend upon «g are linear in the quadrupole, linear in the
sextupole and bilinear in the sextupole times 5. Solving for xoffsets
setting ap = —ae/3, ag = .15 (20% overall non-uniformity) and evaluating
the result numerically, we find z,ffs5e¢ = 0.000150 m for RGF or z,f st =
0.000145 m for RGD. Although these effects are negligible, they are still
more than an order of magnitude larger than the direct sextupole effect (see
Section 3.1). Following the same procedure but setting b3 = 0 provides the
simple formula

40&2d
457
for the position which results in the design bend, which, for the same values
of d and ap as above gives Z,rf5e¢ = 0.000156 m. We note that this is no-
ticeably different than the above result with sextupole considered. Although

Tof fset = (14)
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all of these results are small enough to ignor, the second order interactions
among these non-uniformities are not negligible compared with direct effects.

3.4 Bend Center Effects of Longitudinal Non-Uniformity

[Calculations to be performed.]

3.5 Tune Effects of Longitudinal Non-Uniformity

The equations contain more terms when one examines the effects of non-
uniformity on the focusing properties of gradient magnets. Let us simplify
our considerations initially by ignoring the small design sexupole in our
magnets. By applying the form of Equation 9 but integrating over only
a single gradient magnet, we find the change tune contribution from that
magnet.

L/2 B L/2 g B
—L/2 47T(Bp) —L/2 47T(B()L)

where we obtain the second form by applying the result ByL = (Bp)d. By

applying Equations 2,4 and 5 but with xgep. = 0, b3 = 0 we have,

ﬁmidb29 ﬂcurv 4a2ﬂcurv alﬁsl
= 1
Sv ina 1+ s T T3 )

The result for b3 # 0 is only a bit longer:

(16)

ov

ﬂmidb29 2b3xoffset ﬂcurv 4a2ﬁcurv alﬁsl
1 1
dma (@ + aby J(1+ 3 + 45 + 3 )

8bsd 11 Beury
—— + o105 17
45abo 21 1) (17)

For the gradient magnet locations in the Recycler Ring, fits have been
performed to the design ( functions [only x so far] and the results used to
calculate the effects described in Equation 16. Table 2 displays the results of
these fits and calculations. Note that ap = 1% might be interpreted as 1.3%
non-uniformity. The systematic and random effect have only been combined
for single magnet types. For detailed comparison with other calculations,
further assumptions will be required.

(042 + ﬂcurv +

3.6 Incomplete....

At least the following items are incomplete in this draft: Numbers for Ver-
tical Tune Effects, Numbers for sextupole effects, and analysis of delta z
effects.



MI-0207 0.57 DRAFT 22-Jan-1998 10

Horizonal Focus 1 magnet Systm. Random
Loc ﬂmid ﬁsl ﬂcurv 5”:5 5”:5 5”:5 5”:5
Type m as = 1% a1 =1% oy = 1% a1 = 1%
RGF 49.335 | -0.1082 | -0.04962 | -8.9697E-6 | -7.3346E-5 | -0.0009687 | -0.00076224
RGD 13.522 | -0.1827 | 0.08949 16.177E-6 3.2762E-5 | 0.00174711 | 0.000340468
RGS(f) 49.562 | -0.1027 | -.04487 11.855E-6 | 10.1749E-5 | 0.00075869 0.000814
RGS(d) 10.405 | -.2406 | 0.08017 | -4.4467E-6 5.0044E-5 | -0.0002846 0.0004003

Table 2: Four types of lattice locations employ the three types of gradient
magnets for the recycler. There are 108 locations for the RGF and RGD
magnets and 64 focusing and 64 defocusing locations for RGS magnets. We
tabulate here the parameters of these locations and the tune effect results for
each location type in this table. Single magnet effects are shown in columns
5 and 6. In column 7 we show column 5 times the number of locations, the
result if there is a systematic effect in ay of the size shown (all 8 Gev line
magnets have the same sign of as). In column 8 we show columns 6 time

the square root of the number of locations, the result if there is a random
aq with an RMS of 1%.

4 Using Moments to Relate to Measured Profiles

Measured profiles of the longitudinal (z) distribution of field will be required
in Recycler Gradient magnets. To take best advantage of these measure-
ments, we will choose analysis strategies which extract the most relavant
data. Consider moments of the distributions defined by

szMom:/ szy(z)dz// B(z)dz

(18)

Where we normalize to the integrated strength. The two moments of interest
can be re-expressed in terms of more physically understandable entities as
follows.

6z =" B.ytom (19)

where 0z is the location of the bend center (in the whatever frame z in
measured). We describe ' B, p7om as the first moment of longitudinal profile,
By(z). The second moment measures the width of the distribution of the
field. A natural way to express this is to compare it to the second moment of
a rectangular distribution. If By(z) has value By from —L/2 to L/2 then the
value of 2B, prom is L? /12. Let us define the second moment ratio deviation
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as
TN Bzzmom L gw . (20)
L?2/12 L2 [ B(z)dz

and we will call this quantity the second harmonic normalized deviation
(Delta_z2Mom_rel).

Let us now evaluate the effects on the tune which will be created by the
deviations of the moments from the design values. We calculate the tune
effects using Equation 9 or 15.

5 Analysis and Conclusions

[I would expect to discuss both results of this calculation and comparisons to the
calculations by Norman Gelfand and Shekhar Mishra in this section.....]
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A Analytic Results on Magnet Properties

In examining the longitudinal non-uniformity results, it is useful to compare
them directly to other magnet requirements on an equivalent basis. We will
compile some results here for comparison with other calculations and some
requirements specifications.

A.1 Effects of Gradient Errors

The tune change due to a gradient error in a single gradient magnet can
be evaluated using Equation 15 and Equation 1 (with B’ calculated as for
Equation 10).

R RBS) M OBEB) , 0 (M Bs)Bbs
‘5”_/_L/2 4n(Bp) ds_/_m in(Bol) “ " am /_L/2 a(BoL) Ci |
21
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but since this calculation is for a uniform longitudinal distribution, the in-
tegral on ds gives L and we have

0

ov = mﬁ 0ba (22)
where [ is the average over the magnet. The various magnet designs each
appear at only one type of lattice location so we can use those lattice prop-
erties to evaluate this result. The @ to be used is the value at the center of
the magnet (designated as (,,i4 above). Combining the results from many
magnets is traditionally done by considering systematic effects (coherent
shift due to average dby) and random effects due to the RMS width of the
distribution. The former is obtained by multiplying the single magnet effect
by the number of lattice locations involved, whereas, for the random effects,
the RMS value of the expected change only multiplies the single magnet
results by the square root on the number of locations.

We evaluate this result for the 4 types of gradient magnets in Table 3.
If we add the values (with signs as shown) in column 5 (systematic) we find
v = 0.0362 for the sum of 4 location types or dv = 0.0253 for regular cells
and dv = 0.0109 for dispersion suppressor cells. This is to be compared
with result in Table 1 of MI-0160[7]. Note that rather than dby (in units
normalized to the dipole), MI-0160 specifies the change due for dby/bs so
to compare with these results, one multiplies his result by 1/by which gives
dv = 0.03 for regular cells (4.1 m magnets) and év = 0.0087 for dispersion
suppressor cells (2.7 m magnets in MI-0160 or 3 m magnets in the RRV11
lattice used here). The agreement between these is adequate considering the
somewhat different lattices being considered.

Some care is required in expressing requirements which involved different
magnet types. The systematic error may come from more than one source
and they may affect the resulting tune with different signs. Consider the
simple statement that one permits a systematic error of 1 x 1074 (1 unit) of
by error. If this results from a magnet measurement probe calibration error
then one would naturally give a defocusing magnet an error of -1 units when
giving an error of 1 unit to the focusing gradient magnets. These errors will
tend to cancel. If there is a source of systematic error which is a constant
fraction of the dipole (some measurment feedthru), it will have opposite
signs and the systematic errors will add. However, if the ‘systematic’ error
is simply the mean (central value) of a random distribution resulting from
choices made in correcting the series of magnets with, for example, end
shims, any tendency toward cancellation is lost. Thus, one may prefer to
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specify the systematic limits individually for separate magnet series.

A.2 Tune Effect from End Shims

The lattice design assumed gradient magnet lengths of 177" and 122" for the
regular cell and dispersion suppressor cells respectively. The fabrication plan
is to create magnets with bare poles of this length and to add a 1” end shim
on each end to correct transverse field errors as measured with the rotating
coil harmonics system. These end shims will spread the gradient beyond
the design region. The constraints imposed on the fabrication is to correct
the (naturally small) change in integrated field by retuning the quantity of
ferrite and to achieve the desired integrated harmonics as measured by a coil
which extends through the yoke length and beyond. Let us calculate some
effects on focusing which will remain.

1 magnet | Systm. | Random
Loc Be—mid | 0ba vy vy vy
Type m | units
RGF 49.335 1 3.223E-4 | 0.0348 | 0.00335
RGD 13.522 | -1 | -0.883E-4 | -0.0095 | 0.00092
RGS(f) | 49.562 1 2.158E-4 | 0.0138 | 0.00173
RGS(d) | 10.405 | -1 | -0.453E-4 | -0.0029 | 0.00036

Table 3: Four types of lattice locations employ the three types of gradient
magnets for the recycler (in RRV11). There are 108 locations for the RGF
and RGD magnets and 64 focusing and 64 defocusing locations for RGS
magnets. We tabulate here the parameters of these locations and the tune
effect results for for gradient errors at each location. We use the [3,,,;4 value
but acknowledge that the second order term modifies the average by a few
percent. We choose the sign of dby as one would obtain from a calibration
error in a measurement coil. Different sources of systematic error might
result in a different relative sign of error. Results for a single gradient
magnet are in column 4, the systematic effect is obtained by multiplying by
the number of locations and is shown in column 4 while the RMS (over an
ensemble of machines) results from multiplying column 4 by the square root
of the number of locations.
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A.2.1 Tune Effect from Different Magnet Length

We note that by spreading the integrated field, the focusing will occur at
different lattice positions. Assuming that the by is constant (we will consider
effects due to gradient end shims separately) there will remain a change in
focusing due to the distribution of 3 along the magnet. We describe the
transverse field as in Equation 1, but let L' = L + 2L.,qs and choose B’
such that B'L’ = ByL. We will evalute Equation 9 again, extrapolating the
description of @ from fits to Equation 4. We observe that the contribution
of the uniform component and the linear component will have no change for
a symmetric length change. We focus on calculating the term proportional
t0 Bewry but begin by calculating the tune change due to the gradient for a
magnet of length L'.

_ [P 0B9)B(s)
_/_L//z 4m(ByL) ds (23)
_ bbo /2 By 2z,
= 47ra/y/2 By BoL, il +ﬂsz( %) 4 Beuro L) ) (24)
0by B A(L))3
ov = 47TZBOLﬂmzd[( /+ﬂcm’”( 1(2L)2 ))] (25)

where the term proportional to (s has dropped out by symmetry. The
tuning to achieve the desired bend strength will result in having ByL’ = By L

9b L+ 2Lcpq)?
2 ﬂmzd[ + ﬁcurv((?)fgend))] (26)

L L
(5]/ 0b2 ﬂmzd[l + /BC’U,T”U(l +4 end +4( end)Q)]' (27)

3 L L

Let us now con81der the term which is linear in Lepg
9b L

2 ﬂmzdﬁcurv( Zld ) (28)

Evaluating this for RGF series locations we find that 1” end shims on both
ends of an RGF will produce a tune change of dv, = —7.60 x 1075 so 108
of them will create dv, = —.0082,
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A.2.2 Tune Effect from Lumped End Correctors

Localizing a harmonics correction in the end shim will necessarily place the
sextupole field at a # and x which are not characteristic of the design. The
result in Equation 17 for constant b3 will apply to the body sextupole of
the Recycler gradients. But the extruded poles for the regular cell gradient
magnets are sufficiently different from the design as to require end shims
with significant sextupole correction. Let us calculate the tune effect due
to placing these shims on the magnet centerline and thereby at a significant
x with respect to the design orbit. Similarly, there will be effects from the
lumped quadrupole correction due to the variation of 3 along the magnet.
We note that the quadrupole field at the end shims is given by

x

b2end bBend
B/ = L 2 — B _
(.2 = L/2) = By( 22zt Boend 7

) (29)

where bocng and bsenq are the localized harmonic components and x is

1 2z
T = Tof fset + Tslope” + d(§ - (3)2) (30)
We frequently discuss the end shim harmonic values by describing the effect
(0b;) they will have on the integrated harmonics as follows

By 6b; L = Bobj endLend (31)
SO I
bj end — (Sb]@ (32)

Note that for many magnets the correction will be applied to two ends,
doubling the effect. Let us now evaluate the tune change equation for the
end correctors only.

L'/2 93(s)6B'(s)
) :/ ———=d 33
"= )y an(BoL) (33)
0 5[)2 L 5[)3 L x
v =—" [B(s)By(22 2 4 1B~ Ty, 4
Y 4m(BoyL) 1B Bof a Lend 2 Lena a)] end (34)

where the evaluation of the integration limits is to be carried out for evalu-
ation of § and x within the [].

v = - [Bs) (2 4 22

4 a a a

)] (35)
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We need to evaluate this expression at z = L/2 (or L'/2 but we will neglect
that difference). The effect of a pair of quadrupole end shims which together

create dby will be 5
ov = [ﬁmzd(l + ﬁcurv)( a2 )] (36)

Comparing to Equation 16 for the design uniform gradient, we note that for
a uniform gradient magnet, the term in .., has a relative weight of 1/3.
Since the dbs which is being created by the end shims is to correct the deficit
in the body field, we take 2/3 of the term in Sy

)
ov = [ ﬁmzdﬁcurv( b2

)] (37)
When evaluated for one RGF we find 6, = —1.066 x 107 for a quadrupole
correction of 1 x 10™* (1 unit). Thus a systematic correction of 1 unit on
all RGF’s will shift the horizonal tune by dv, = —.0011

Returning to Equation 35 and considering the sextupole correction end

shim we find 9 5
T
= 1B~

47r[ a a

] (38)

Again we note that the terms with Gy will cancel (for symmetric) correctors
while we get

0 obs x t+d 1)
6 = - Bmia (1 + Beurs) > G, (39)
Comparing with Equation 17 and saving only the difference we have
0bs 3 24
[ﬁmzdﬂcurv 3 %] (40)

a
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