# **Proton Economics**

Allocation of Proton Source 15 Hz Pulses &

Dealing With Implied Intensities

Elliott McCrory

19 March 2003

## **Outline**

- Proton Source Hardware Facts
- Proton Source Activation Facts
- Beam Delivery Facts
  - Stacking
  - MiniBooNE
  - NuMI
- Summary of Proton Economics
  - Details of Three Scenarios
  - "Team Proton" spreadsheet

## **Proton Source Hardware Facts**

#### Linac operates at 15 Hz

- Everything operates at 15 Hz, beam or no beam
- NTF takes "spare" cycles for treatment
  - Lab management: NTF may take priority if needed.

#### Booster resonates at 15 Hz

- Magnets/Lattice operate at 15 Hz.
- RF, injection and extraction operate only when beam is anticipated.
  - Many devices require 2 "pre-pulses" without beam.

#### □ Limit today: ~7.5 Hz

- Limited by heating of Injection ORBMP magnets.
- Administrative limit: 5.5 Hz, including pre-pulses.
- All other systems can operate at 15 Hz.

## **Proton Source Activation Facts**

- Linac "beam envelope" allows for 15 Hz continuous operation
  - But some work areas may require reclassifying
- Booster is already limited by activation.
  - Activation per proton:
    - Highest for stacking cycles.
    - MiniBooNE swaps protons per cycle for more cycles per hour.
  - RF cavities are the most active.
    - Highest maintenance item in Proton Source
    - ~ 100 mR/hr fields are common.
  - Collimator system:
    - Slated for installation 8/03.
    - Should allow 2X more beam at same activation level.
  - Other improvements under study/design, e.g.:
    - Overcoming issue with extraction "Dog Legs"
    - New, wider-aperture RF cavities

# **Beam Delivery Facts**

- We deliver "protons per pulse" (O(10¹²))
  - Activation depends on "protons per hour" (O(10<sup>16</sup>))
  - Experiments want "protons per year," (O(10<sup>20</sup>))
    - But I don't understand that unit.
- Protons/Pulse, today:
  - $\blacksquare$  3.5 to 5.0 × 10<sup>12</sup> ppp
- Run II and MiniBooNE request:
  - $5.0 \times 10^{12} \text{ ppp}$
- NuMI Request (?):
  - More than  $5.0 \times 10^{12}$  ppp
- Details for:
  - Stacking,
  - MiniBooNE,
  - NuMI ...

# Stacking

### Request:

- 120 GeV, 5 × 10<sup>12</sup> ppp, 1.9 to 2.2 seconds.
- $= 0.9 \text{ to } 0.8 \times 10^{16} \text{ pph}$
- $\sim 0.43 \text{ to } 0.50 \times 10^{20} \text{ ppy (60\% uptime)}$

## ■ Today:

- 120 GeV, 4.8 × 10<sup>12</sup> ppp, 2.8 seconds.
- $= 0.6 \times 10^{16} \text{ pph}$
- $= \approx 0.32 \times 10^{20} \text{ ppy (60\%)}$

#### **□** Forevermore.

## **MiniBooNE**

### ■ Request:

- 8 GeV, 5 Hz, 5 × 10<sup>12</sup> ppp; 9.0 × 10<sup>16</sup> pph
- $\sim$  7.1 ′ 10<sup>20</sup> ppy (80% uptime)

## ■ Today:

- 8 GeV, ~3 Hz; ~3.5 ×  $10^{12}$  ppp,  $3.5 \times 10^{16}$  pph
- $= \approx 2.5 \ 10^{20} \text{ ppy}$
- □ Will run through 2004 (?)

## **NuMI**

## ■ Request:

- 120 GeV,  $5 \times 10^{12}$  ppp, 5 Booster cycles over 2 seconds:  $4.5 \times 10^{16}$  pph
  - » 2.4 ´ 10²⁰ ppy (60% uptime)
- Piggybacked on stacking cycles
  - Slipstacking?
- Starting in 2005 (?)
- Other coming requests?
  - CKM? BTeV?

## **Summary of Proton Economics**

| Booster Hardware Issues | Radiation Issues |
|-------------------------|------------------|
|                         |                  |

|                     |        | Batches |       |    | Rep Rt. | Protons Deliv'd (E16/hr) |       |     | Total |        |       |
|---------------------|--------|---------|-------|----|---------|--------------------------|-------|-----|-------|--------|-------|
| Scenario            | Cycles | Pre-p.  | Stack | MB | NuMI    | Ave Hz                   | Stack | MB  | NuMI  | E16/hr | /Now# |
| Stack               | 30     | 2       | 1     |    |         | 1.5                      | 0.9   | 0.0 | 0.0   | 0.9    | 15%   |
| Stack + MB          | 30     | 2       | 1     | 10 |         | 6.5                      | 0.9   | 9.0 | 0.0   | 9.9    | 165%  |
| Stack + MB          | 25     | 2       | 1     | 9  |         | 7.2                      | 1.1   | 9.7 | 0.0   | 10.8   | 180%  |
| Stack + NuMI        | 30     | 2       | 1     |    | 5       | 4.0                      | 0.9   | 0.0 | 4.5   | 5.4    | 90%   |
| Stack + MB + NuMI   | 42     | 2       | 1     | 14 | 5       | 7.9                      | 0.6   | 9.0 | 3.2   | 12.9   | 214%  |
| SlipStack + NuMI    | 42     | 2       | 2     |    | 10      | 5.0                      | 1.3   | 0.0 | 6.4   | 7.7    | 129%  |
| SlipStk + MB + NuMI | 42     | 2       | 2     | 14 | 10      | 10.0                     | 1.3   | 9.0 | 6.4   | 16.7   | 279%  |

- \* Assumes 5 ´ 10¹² ppp
- # Now » 6 ´ 10¹6 pph
- Lab Management: Not committing to running MiniBooNE & NuMI simultaneously.
- Proton Source management: Be prepared, anyway.

## **Details of Three Scenarios**

- Stacking, MiniBooNE and NTF, 2.0 sec stacking period.
- 2. Same, 1.7 sec stacking period.
- Stacking, MiniBooNE, NuMI and NTF, 2.8 sec stacking/NuMI period,
  - "Be prepared."
- Other scenarios would include CKM, different cycle times for NuMI and/or MiniBooNE, the MuCool experiment, BTeV (?) etc.

# 1. Stacking, MiniBooNE & NTF

Stacking at 2.0 seconds (30 cycles)



## 2. Stacking, MiniBooNE & NTF

#### Stacking at 1.6667 seconds (25 cycles)



# 3. Slip Stacking, NUMI, MiniBooNE & NTF

Stacking at 2.8 seconds (42 cycles)



# P. Kasper & "Team Proton": Cycle Counting Spreadsheet

http://www-bd.fnal.gov/proton/ProtonCommittee

#### **MiniBooNE**

| Program              | Booster<br>Batches | Fraction of year allocated | Booster<br>Beam<br>Trains | Cycle<br>time<br>(sec) | Booster Intensity 5.0E+12 1 | Booster<br>Rate (Hz)<br>7.5 2 | Booster protons/hr 1.8E+17 3 |
|----------------------|--------------------|----------------------------|---------------------------|------------------------|-----------------------------|-------------------------------|------------------------------|
| BooNE                | 10                 | 0.80                       | 1                         | 2.00                   | 4.0E+12                     | 6.00                          | 7.1E+16                      |
| BooNE                | 0 #                | 0.00                       | 0                         | 0.00                   | 0.0E+00                     | 0.00                          | 0.0E+00                      |
| NuMI                 | 0                  |                            |                           |                        | 0.0E+00                     |                               |                              |
| Pbar                 | 0                  |                            |                           |                        | 0.0E+00                     |                               |                              |
| BooNE                | 0 #                | 0.00                       | 0                         | 0.00                   | 0.0E+00                     | 0.00                          | 0.0E+00                      |
| CKM                  | 0                  |                            |                           |                        | 0.0E+00                     |                               |                              |
| Average of MI modes: |                    |                            |                           |                        |                             | 0.00                          | 0.0E+00                      |

# fast spill cycles per slow spill cycle:

# **Kasper Spreadsheet Assumptions**

#### **Program Requests**

```
Pbar 7.5E+19 p/year
NuMl 3.6E+20 p/year
BooNE 5.0E+20 p/year
```

10 batches @ 5 Hz

CKM 2.2E+19 p/year 5.0E+12 p/second 6 sec slow spill

#### **Up Time (fraction of year)**

```
Booster 0.8 MI 0.6
```

#### **Machine Parameters**

- 22 clicks for MI acceleration
  - 2 clicks for slip-stacking (used if Pbar batches > 1 or NuMI+Pbar batches > 6)
  - 1 click added to MI cycle for debunching for CKM
  - 2 Booster prepulses required before beam cycles
  - 2 seconds minimum MI cycle time for Pbar

#### MiniBooNE & Pbar with slip-stacking

| Program              | Booster | Fraction  | Booster | Cycle | Booster          | Booster      | Booster          |
|----------------------|---------|-----------|---------|-------|------------------|--------------|------------------|
|                      | Batches | of year   | Beam    | time  | Intensity        | Rate (Hz)    | protons/hr       |
|                      |         | allocated | Trains  | (sec) | <b>5.0E+12</b> 1 | <b>7.5</b> 2 | <b>1.8E+17</b> 3 |
| BooNE                | 10      | 0.20      | 1       | 2.00  | 4.0E+12          | 6.00         | 7.1E+16          |
| BooNE                | 10      | 0.60      | 1       | 2.00  | 4.0E+12          | 7.00         | 8.6E+16          |
| NuMI                 | 0       |           |         |       | 0.0E+00          |              |                  |
| Pbar                 | 2       |           |         |       | 4.0E+12          |              |                  |
| BooNE                | 0 #     | 0.00      | 0       | 0.00  | 0.0E+00          | 0.00         | 0.0E+00          |
| CKM                  | 0       |           |         |       | 0.0E+00          |              |                  |
| Average of MI modes: |         |           |         |       | 7.00             | 8.6E+16      |                  |

# fast spill cycles per slow spill cycle: 0.00

#### MiniBooNE, Pbar, & NuMI with fast slip-stacking

| Program | Booster | Fraction      | Booster | Cycle     | Booster          | Booster   |   | Booster          |
|---------|---------|---------------|---------|-----------|------------------|-----------|---|------------------|
|         | Batches | of year       | Beam    | time      | Intensity        | Rate (Hz) |   | protons/hr       |
|         |         | allocated     | Trains  | (sec)     | <b>5.0E+12</b> 1 | 7.5       | 2 | <b>1.8E+17</b> 3 |
| BooNE   | 10      | 0.20          | 1       | 2.00      | 4.5E+12          | 6.00      |   | 8.2E+16          |
| BooNE   | 10      | 0.60          | 1       | 2.40      | 4.5E+12          | 10.00     | ! | 1.5E+17          |
| NuMI    | 10      |               |         |           | 4.6E+12          |           |   |                  |
| Pbar    | 2       |               |         |           | 4.8E+12          |           |   |                  |
| BooNE   | 0       | <b>#</b> 0.00 | 0       | 0.00      | 0.0E+00          | 0.00      |   | 0.0E+00          |
| CKM     | 0       |               |         |           | 0.0E+00          |           |   |                  |
|         |         |               | P       | Average o | of MI modes:     | 10.00     | ! | 1.5E+17          |

# fast spill cycles per slow spill cycle:

0.00

#### MiniBooNE, Pbar, NuMI, & CKM

| Program              | Booster | Fraction  | Booster | Cycle | Booster          | Booster   |   | Booster          |
|----------------------|---------|-----------|---------|-------|------------------|-----------|---|------------------|
|                      | Batches | of year   | Beam    | time  | Intensity        | Rate (Hz) |   | protons/hr       |
|                      |         | allocated | Trains  | (sec) | <b>5.0E+12</b> 1 | 7.5       | 2 | <b>1.8E+17</b> 3 |
| BooNE                | 10      | 0.20      | 1       | 2.00  | 4.6E+12          | 6.00      |   | 8.3E+16          |
| BooNE                | 10      | 0.42      | 1       | 2.40  | 4.6E+12          | 10.00     | ! | 1.9E+17 !        |
| NuMI                 | 10      |           |         |       | 6.6E+12 !        |           |   |                  |
| Pbar                 | 2       |           |         |       | 6.9E+12 !        |           |   |                  |
| BooNE                | 30      | 0.18      | 3       | 7.93  | 4.6E+12          | 5.29      |   | 7.7E+16          |
| CKM                  | 6       |           |         |       | 5.0E+12          |           |   |                  |
| Average of MI modes: |         |           |         |       |                  | 8.55      | ! | 1.5E+17          |
| <i>u.e.</i>          |         |           |         |       |                  |           |   | 7.45             |

# fast spill cycles per slow spill cycle: 7.45

- Being studied by Team Proton.
- No published recommendations, yet.

## **Conclusions**

- Proton Source limited by activation.
  - Several improvements underway to increase flux without increasing activation:
- □ Hardware limit now: 7.5 Hz.
  - Upgrade ORBMP injection:
- Can do some of requested program now.
- Must coordinate requests on the PS with our abilities to satisfy these requests.