
Design for Recycler BPM Calibration Acnet Page
Marc W. Mengel

Abstract
This paper describes the current design for the Acnet Console application which will manage BPM
Calibration for the Recycler Ring at Fermilab. This document provides a initial description of the
intended usage of the software, and an overview of how the software is broken into modules. It
should assist other people in understanding the software. It will be updated as design work
completes, and as implementation progresses.

Intended Usage
Functionality

The BPM Calibration Application will allow users to:

 initiate calibration tests on one, several, or all BPMs on one, several, or all control "houses" in the Recycler
Ring.

 select from one or several intensity levels and waveforms of calibration signal.
 abort such tests if they feel it is taking too long
 view test results in a fasion which lets them quickly identify problem BPMs.
 review history of, and adjust value of, calibration parameters for BPMs.

Screens

Currently, the application is envisioned as proceeding through 4 screens:

1. A setup screen that lets the user select:
 Houses, (and BPMS within those houses??) to calibrate [default all in all]
 Calibration Intensity Levels [default all]
 Calibration Waveforms to use [default all]

and lets them start the calibration
2. A progress screen, which shows the progress of calibration on the various houses as we step through the

various intensities and waveforms
3. A results screen which shows a graph of average and RMS positions read back from various BPMs, and

lets the user select a BPM for the adjustment screen; and has a "Adjust All Outliers" button (with an R U
sure popup) to adjust all out of tolerance BPMs to a recommended calibration value.

4. The adjustment screen, which shows a history of past calibration values for this BPM as a time plot and
histogram, provides recommended new values for calibration parameters (which may be "ignore this
BPM"), and allows the user to pick values (default the recommended ones) and set the calibration

Page 1 of 8Design for Recycler BPM Calibration Acnet Page

4/23/2020https://beamdocs.fnal.gov/AD/DocDB/0005/000557/009/DesignNote.html

parameters for the BPM to those values.

The normal usage would start at the setup screen, pause at the progress screen as calibration sets are made, and
then move on to the results screen, where various trips to the adjustment screen and back would be made. The
thorough user would then go back to the Setup screen, re-run the calibration, and review how the new values
worked on the results screen.

Initial setup for a given housefull of BPMs could be made by the "Adjust All Outliers" button on the results
page.

Architecture of the software
The code will be organized into a few small modules of one source file each:

 a hardware module which will do all of the ACNET communication with the BPM house ACNET nodes.
This module will initialy be stubbed out with routines that provide fake data for testing.

 a state module which will keep track of what screen the user is on, and how far through the calibration
process we are.

 a module for each of the 4 screens (setup, progress, results, adjustment), which will draw that screen on
the users display console.

 a history module which will track the calibration history of the various BPMs in a database
 a main module, which will house the main Console application event loop, and update the state module as

events come in, which will in turn aks the appropriate screen module to update the console display.

The subroutine call interfaces for these modules will be described in more detail in the following sections.

Page 2 of 8Design for Recycler BPM Calibration Acnet Page

4/23/2020https://beamdocs.fnal.gov/AD/DocDB/0005/000557/009/DesignNote.html

The hardware module
The hardware module will be in file "hw.c", and have interface subroutines:

int hw_init();
Initialize hardware interfaces (i.e dio init/lock routines)

int hw_trm();
shutdown hardware interfaces (i.e dio close/unlock routines)

int start_signal_generator(int house, int beam_type, int ratio);
turn on the calibration signal generator in a given house generating a given beam type, and with A:B ratio
given (currently only 1:1 or 2:1)

int stop_signal_generator(int house, int beam_type);
turn off calibration signal generator (must always be called before leaving application!)

int start_data_collection(int house, int beam_type);
tell the front end to begin collecting closed-orbit data for the given beam_type.

int check_data_ready(int house, int beam_type);
see if started data collection has finished.

int collect_data(int house, int raw, int *pn_bpms, float *pos, float *rms);
retrieve collected data into arrays. This actually sums the values into the array; they will be divided by the
number of sampling runs at the end of the data collection before graphing.

The state module
In order to allow calibration to be done in bite-sized bits, while polling for user requests to abort, etc; main flow
of control of the application will be buried in a state machine, with each event from the event loop allowing us to
tick forward a state at a time.

This module will receive event notifications from the main module, and will refer the appropriate event to the
current screen module's update() call, or other internal subroutine calls, as indicated on the state transfer edges in
the diagram below. Each such subroutine will return a result of either:

 0 == stay in this state
 1 == move to "next" state
 -1 == revert to setup screen
 -3 == revert to adjust screen

The state diagram (with nested sub-state diagrams indicated with dashed lines) looks like:

Page 3 of 8Design for Recycler BPM Calibration Acnet Page

4/23/2020https://beamdocs.fnal.gov/AD/DocDB/0005/000557/009/DesignNote.html

int st_update(int wid,int type,int row,int col,int info)
update appropriate screen with new event.

s_g_on()
Turn on signal generator for current waveform, intensity, etc. in all selected houses.

d_c_on()
Turn on data collection in all selected houses.

d_c_done()
Check if data collection is done in all selected houses, or if we have timed out.

collect_data()
collect raw and adjusted data for all selected houses

s_g_off()
turn off signal generator in all houses

The state module will also hold the data read back from the calibration data collection in arrays:

 float st_pos[]; float st_rms[], st_pos_raw[], st_rms_raw[];
 int n_samples;

The setup screen module
This module will deal with the setup screen, which should look something like:

 BPM Calibration Setup
 +-Coverage==========+ +-Intensities=======+ +-Beam Simulation==+
 |[x] All BPMs | |[x] Low (0.1V) | |[x] un-bunched |
 |[] Houses:___-___ | |[x] Med (0.5V) | |[x] 2.5MHz |

Page 4 of 8Design for Recycler BPM Calibration Acnet Page

4/23/2020https://beamdocs.fnal.gov/AD/DocDB/0005/000557/009/DesignNote.html

 |[] BPMs:____-____ | |[x] High(0.9V) | |[x] 7.0MHz |
 +===================+ +===================+ +==================+

 [Start Calibration]
 +-Messages===+
 | |
 | |
 | |
 | |
 +==+

ss_draw();
draw the setup screen

ss_update(int type,int row,int col,int info)
handle an event from the main loop. This will consist of one of:

 accepting specific house/bpm ranges (or "all")
 accepting specific intensity ranges (or "all")
 accepting specific beam type ranges (or "all")
 moving to the progress screen

The progress screen module

 BPM Calibration Progress
 +-Progress==+
 |XXXXXXXXXX |
 +===+

 [Abort]
 Intensity: 0.3v
 Ratio: 2
 Waveform: unbunched

 +-Messages===+
 | |
 | |
 | |
 | |
 +==+

ps_draw();
draw the progress screen

ps_update(int type,int row,int col,int info)
handle an event from the main loop. This will consist of:

updating progress bar, and current waveform, ratio, and intensity
 aborting if the user has requested it.

Page 5 of 8Design for Recycler BPM Calibration Acnet Page

4/23/2020https://beamdocs.fnal.gov/AD/DocDB/0005/000557/009/DesignNote.html

The results screen module

 BPM Calibration Results
 [Return to Setup] [Adjust All Outliers]
 +-Display====+=============+ +-Selected-+================+
 |[] Raw |[x] Position | |BPM: 37 | R Pos RMS |
 |[X] Adjusted|[] Intensity| | | 1:1 0.3 0.003 |
 +============+=============+ | [Adjust] | 2:1 2.3 0.002 |
 +==========+================+

 +-Messages===+
 | |
 | |
 | |
 | |
 +==+

rs_draw();
draw the results screen

rs_update(int type,int row,int col,int info)
handle an event from the main loop. This will consist of either

 selecting a BPM as current, and updating the text parameters box.
 transferring to the adjustment screen for the current BPM
 adjusting all BPMs with the "Adjust All" button
 hopping back to the setup screen at user request ("Setup") button.

Page 6 of 8Design for Recycler BPM Calibration Acnet Page

4/23/2020https://beamdocs.fnal.gov/AD/DocDB/0005/000557/009/DesignNote.html

The adjustment screen module
This module should present a screen like:

 BPM Calibration Adjustment
 [Return to Setup] [Return to Results]

 Scale Offset
 [] Historical Average 0.0025 0.0020
 [] Latest Reccomendation 0.0030 0.0020
 [] Custom Value ______ _______

[Adjust Calibration]
 +-Messages===+
 | |
 | |
 | |
 | |
 +==+

as_draw();
draw the adjustment screen

as_update(int type,int row,int col,int info)
handle an event from the main loop. This will consist of either

 accepting a new parameter value

Page 7 of 8Design for Recycler BPM Calibration Acnet Page

4/23/2020https://beamdocs.fnal.gov/AD/DocDB/0005/000557/009/DesignNote.html

 adjusting this BPM by calling the history module
 hopping back to the result screen at user request.

The history module
This module will help us track history of calibration of BPMs.

hs_fetch(int maxbpms; int &nbpms, float *shifts, float *scales);
Get current calibration params for BPMs

hs_history(int bpm, int max, int &n, float *shifts, float *scales, long *dates);
Get historical calibration params for a given BPM.

hs_adjust(int bpm, float shift, float scale);
Set new shift and scale value for the given BPM.

hs_forget_before(int bpm, long date);
Remove entries older than date from history for a given BPM.

The main module
This consists pretty much of the main() subroutine, which will call the routines to initialize the hardware, call the
state machine repeatedly, then clean up.>

Page 8 of 8Design for Recycler BPM Calibration Acnet Page

4/23/2020https://beamdocs.fnal.gov/AD/DocDB/0005/000557/009/DesignNote.html

