
 1

ACNET Package

Fermilab
Beams Division

Accelerator Controls Department

Kevin Cahill

Version 1.0
March 17, 2003

Introduction
ACNET is a messaging protocol for the Fermilab Accelerator Control System. In Java, it
is carried over UDP. ACNET defines the framing of messages sent from and received on
socket 6801. A single ACNET implementation can be instantiated on a node. Further,
the message handling with ACNET clients is generally restricted to clients running within
the same virtual machine.

This document describes its implementation with the goal of describing how ACNET and
its clients work within a Data Acquisition Engine (DAE). It begins with an introduction
to the package’s modules.

Finally, the section entitled ACNET in a Client describes how a client not running in an
engine virtual machine may use ACNET.

Modules

AcnetUtility.java
This module contains methods to stop ACNET.

AcnetNode.java, AcnetNodeTables.java
These modules contains support for addressing ACNET nodes which have a six character
logical node name, a byte each of trunk and node number, an IP name, and an IP address.

AcnetConnection.java
This is ACNET’s largest module and contains support for obtaining a task connection
and sending and receiving ACNET messages.

 2

AcnetHeader.java
All ACNET messages carry a header describing the message source, destination, and
content. This module supports the construction and deciphering of these headers.

AcnetIPHeader.java , AcnetMCHeader.java
These modules supports message headers encompassing a restricted set of multicast
message types including Tevatron clock event, software state transition, pool, and alarm.

AcnetReadThread.java
This module always has a blocking read queued to the ACNET socket. Incoming
messages are routed by this module.

AcnetError.java
Message headers and contents may contain a short word of ACNET error status
consisting of a byte of facility code and a byte of error status. This module defines
several facilitys’ error codes, supports the database translation of error code to message
strings, and supports error caches for statistics and reporting.

AcnauxReplier.java
This module supports statistics returns common to all control system ACNET
implementations through the connected task name ACNAUX.

AcnetReplier.java
This module is an abstract class describing methods a connected task must implement to
handle incoming requests.

AcnetRequest.java
This module describes an incoming ACNET request.

AcnetReply.java
This module describes an interface a connected task implements to receive ACNET
replies.

AcnetClientReply.java
This module describes an interface a client application not running within the same
virtual machine as an engine implements to receive ACNET replies.

AcnetKiller.java
This module supports ACNET killer messages requesting that any outstanding ACNET
communications with this node should be canceled. This message type is sent to all
front-ends on startup.

 3

BounceReplier.java
This module supports bouncing ACNET messages used to measure throughput and
response.

CheckPassthruThread.java
This module supported the bridge between UDP and TokenRing. It is no longer useful.

Rad50.java
ACNET task names in message headers are encoded in radix Rad50, an encoding scheme
that packs 6 ASCII characters into a short word. This module supports the encoding and
decoding of Rad50.

Signaler.java
This module supports synchronization objects.

Startup
The engine’ s gov.fnal.controls.daq.consolidate.EngineStartup module starts ACNET
using AcnetUtility.initializeAcnet. ACNET is stopped by the module
gov.fnal.controls.servers.DAE.DAE using AcnetUtility.stopAcnet.

Using ACNET in an Engine
There are dozens of examples of connected ACNET users in the code repository. Search
the repository for new AcnetConnection and follow the examples in code.

ACNET in a Client
ACNET capable machines have a valid entry in the ACNET node tables and have various
ACNET classes writing and reading ACNET’ s port address. A client application is able
to issue ACNET request and receive replies through a DaqJob on a cooperating engine.

The AcnetClientConnnection class in the gov.fnal.controls.daq.datasource package
describes how to use ACNET in a client application.

