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Introduction
Myself

• Graduate Student at the 
University of Texas

Sine 1999
• NuMI/MINOS

Since 2000
• Booster Group

Since 2003
• Fermi Ph.D. program

Since 2003 or 2004

People Involved
• Sacha Kopp

Advisor in Texas
• Eric Prebys

Supervisor at FNAL
• Bill Pellico

Cogger at FNAL
• Bob Webber

Earlier Cogger
• Rich Meadowcraft, Todd Sullivan, 

Andrew Feld, Jim Lackey, Alberto 
Marchionni, Alex Waller, Craig 
Drennan

Have helped out
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Outline
I. Motivation

i. Multi-Batch Operation
ii. Booster Losses

II. Notching the Booster Beam
I. Extracting with the Notch

III. Sources of Slippage
IV. Cogging Method
V. Examples of Issues Encountered
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The Fermilab Booster
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• Multiple-turn injection of H- ions
Carbon stripping foil
Typically 12-14 turns

• Accelerates 400 MeV → 8 GeV
• Fast cycling synchrotron

Resonant magnet ramp
Frequency of 15 Hz locked with wall-
socket

• Circumference of 474 m
• Beam bunched at 37 MHz

Harmonic number = 84
53 MHz at extraction

• 18 RF Stations → 0.9 MV
• Accelerates in 33 ms

γT = 5.45
• 5-6 x 1012 protons/pulse

80 – 90 % efficient
• Single turn extraction

Two extraction regions

Injection
Extraction to 

Main Injector / 
MiniBooNE

Extraction to 
Beam Dump



The Main Injector
• Accepts 8 GeV protons from the Booster
• Accelerates to 120 GeV

Uses 53 MHz from the Booster
4 MV of RF power

• Circumference of 3319 M
7 x the length of the Booster



NuMI/MINOS

• Long-Baseline experiment
Neutrino oscillations measurements
735 km

• Uses 120 GeV protons from the Main 
Injector

• Designed for 400 kW ave. power
Will be closer to 250 kW as start

• Seriously statistics limited
Initially needs 8 x 1020 protons

• Will start December 2004

Neutrinos at the Main Injector
Main Injector Neutrino Oscillation SearchNeutrino beam
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Slip-Stacking
• Combines two Booster 

batches longitudinally 
In the Main Injector

• To be used, initially, for 
antiproton production

Part of Run II Upgrades
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Multi-Batch Operation

Batch 1 (PBar)

Batch 2

Batch 3

Batch 4

Batch 5

Batch 6

Booster

Main Injector

½ Batch
(empty) ½ Batch

(empty)

• Two beams must be accelerated together in the Main Injector
Extracted to PBar & NuMI

• Requires “multi-batch” operation
6 batches from the Booster

NuMI
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Radiation Issues
• Radiation is the operational limit 

on Booster operation
Limits integrated number of protons

• Residual activation in the tunnel
Radioisotopes created by showers
Long lived isotopes limit how much 
maintenance can be done in the 
tunnel

• Damage of beam components
• Prompt radiation from the 

showering of lost protons
Radiation scales with energy and 
number of protons lost
Very small amount penetrates the 
shielding
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Extraction → Need for a Notch
• Extraction kicker magnet has a 

risetime of ~ 40 ns
Only ~ 10 ns between bunches

• Beam lost at 8 GeV
Lost on septum magnet at extraction
Intolerable for extended operation

• Instead, beam is removed at 400 MeV
Create a “notch” in the beam
Activation scales, roughly, with beam 
energy lost

• Loss reduced by 95% (from this 
source)

Position of losses can be chosen as a 
non-critical area

• Extraction kicker firing must be 
synchronized with the notch

Easy with one batch…

84 RF buckets
around circumference

Notch

Booster
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Notching
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• Induce a large vertical betatron 
oscillation

• Uses a kicker magnet
• Displacement goes as:

φy ~ 90o / period
• Most of the beam is deposited in 

the third magnet
• Kick must be large enough to 

scrape off beam
Beam is stiffer at higher energy

Notcher

Pinger

)sin( V
y φβ

py ∝∆
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Notching for Multibatch
- Cogging -

84 RF buckets
around circumference

NotchBooster

Main Injector

Previous injectedPrevious injected
Booster batchBooster batch

• Booster extraction to MI must be synchronized with the notch
• Extraction must also be synchronized to the beam already 

circulating in the Main Injector
• Problem: The Booster and Main Injector are not necessarily 

synchronized
Booster beam “slips” relative to the Main Injector
Amount of slippage is not consistent cycle-to-cycle

• “Cogging” is forced synchronization of beams
No Booster flattop available to fix at the end
Active feedback is necessary during acceleration



Following the Notch
Raw position • RF buckets slip at a rate fMI – fB

Initially 15 MHz
Notch wraps around the Booster 
many times

• Extraction with one batch
Count RF buckets to make a marker
Extract on marker

• Tunable delay
Reset Main Injector

• With several batches
Possible if total slippage is exactly 
the same
Requires 1 in 100,000 consistency

6/7 resonance
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Measuring Slippage
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• Monitor Notch position throughout 
the cycle

• Use Main Injector RF as a standard 
clock

• Booster RF frequency varies with 
energy

38 → 53 MHz

• Start counting on Main Injector 
revolution marker

• Stop Counting on Booster revolution 
marker

• Makes a table of positions (tripplan)

588 buckets @ 52.8114 MHz
Main Injector 

Revolution Marker

84 buckets @
38 – 53 MHz

Booster Revolution 
Marker (Notch)

Booster RF 38 – 53 MHz

in 1+in 2+in



Relative Slippage
• Slippage in a cycle varies by > 200 buckets 

About 3 circumferences
• Notch is essentially at a random position w.r.t the beam 

circulating in the Main Injector
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Raw position                 ⇔ Relative to baseline

~ 3 turns



Sources of Slippage
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η• Any change in the difference of 
frequencies (fMI, fB) will cause 
slippage

• Some errors in the Booster can be 
parameterized as a change in p(t)

• Slip rate: η (buckets/ time)
15 MHZ → 0   

• (inj. → ext.)

• Variations in wall socket 
frequency has long been 
suspected as a source of error

Booster 15 Hz is line f ÷ 4
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Error Characterization
• Several possible errors shown below:

Timing: 1 µs ⇒ 15 bucket slip
Magnet Frequency: 1 mHz ⇒ 6 bucket slip
Minimum Magnet current (δpi): 1/10,000 
⇒ 10 bucket slip
Maximum Magnet current (δpe): 1/10,000 
⇒ 7 bucket slip

• Any perturbation to η(t) will resulting 
slippage

• Some errors can be parameterized as a 
change in p(t)

Each has a particularly shaped S(t) curve

Maximum
Magnet Current

Magnet Frequency

Timing

Minimum
Magnet Current

Time (ms)

δS
(t)
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Cogging Method
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sample

Notch
radial feedback

• Use the early part of the cycle to 
predict net slippage before extraction 

Place the notch anticipating further 
slippage (few ms into cycle)

• After transition slippage can be 
induced by changing the radial 
position of the beam

Changes the feedback of the Low 
Level RF systems
Changes the circumference, and thus 
period, of a revolution
Active feedback can correct to zero 
error

∆r

~ 3 turns



Intelligent Notching
• Depends on consistent slippages signature

i.e. source of slippage

• Application of the notch 5 ms later can reduce range
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~ 3 turns

~ 20 buckets



First Tests of Cogging
• Notch using prediction
• Radial Feedback late in the cycle
• ∆r = k · ∆S

Exponential damping
k ≈ 0.2 mm / bucket
e-folding time ≈ 10 ms

Notch
Radial

Feedback

Notch

Radial
Feedback

Doesn’t get to zero
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Recent Cogging in the Booster
• Shown are the second batches of a slip-stacking cycle

All slippage is to one side
Radial feedback is significant

• Radial offset goes to a constant value to get closer to zero
90% with 0 error
Other 10% with ± 1  (out of ~ 70)

Notch

Radial
Feedback 0 ms 33 ms

0e12
-5 mm

2.4e12
+5 mm

15 ms 35 ms

Intensity

Radial Positions
Of multiple cycles
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Beam in the 
Main Injector

Ti
m

e 
→

Notches

• These are Booster Batches lined 
up in the Main Injector

Two different beam tests
• Kicker extraction is 

synchronized with beam in Main 
Injector

Not to the notch in Booster
• Upper set is uncogged

Notch appears randomly within 
the batches

• Second batch is cogged
Notch appears at a consistent 
position with each batch
Only the timing of the notcher
need be adjusted

• Wouldn’t be visible otherwise

Ti
m

e 
→



Ping Notching
• Current notch knocks out the beam with one kick

Works less well at slightly higher momenta
Activates one region with the loss

• This loss is irreducible and scales with the number of protons

• Alternative: Apply a series of smaller kicks (pings)
Similar, in concept, to anti-damping

• But, no feedback
Takes a few hundred turns
Uses a solid-state driver
Losses go into collimators

• Need to account for tune spreads and shifts
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Broadband Pinging Simulation
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Applying a broadband 
sequence of pings allows a 

range of tunes to be 
kicked out



Intensity in the Main Injector

• Since commissioning, MI has run with only 5 x 1012 protons in it
1/7 of the ring

• With NuMI, there will be at least 3 x 1013

5+1 x 1012

Booster per-batch intensity may be higher
Stacking schemes might allow another 50%

• Numerous problems need to be addressed
Foremost are instabilities due to beam-loading and other collective effects

• This is just to get to our planned intensities, higher  will require 
significant upgrades
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A View of Slip-Stacking
Time
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GMPS
• Booster magnets are part of a resonant circuit

DC & AC components
AC is part of a LRC circuit with choke & caps in 
tunnel

• Circuit controlled by “GMPS” (Gim-pis)
Gradient Magnet Power Supply
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Settings

Read-backs

Feedback



GMPS Regulation
• Observed Oscillation of minimum 

current
Occurs over a train of cycles

• Suggestive of line draw, and 
compensation

Feedback with t ≈ 400 ms

• Hypthesized cause:
Pulsed devices drag line current down
Lower line current reduces power 
input to GMPS
Particularly, RF & bias supplies
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GMPS Over a Cycle Train
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GMPS regulation
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GMPS Effects

July 27, 2004 Robert Zwaska
Booster Cogging

32

• These are all the second $14
w.r.t. a first $14

• All display an initial slippage
Starts after ~1 ms
Rate of ~ 7 buckets/ms
Turns around after notch

• Difference depends on position on train
Worse for NuMI cycles
Depends on the rest of the timeline
Different signature than other slips

• Hurts Prediction
Can’t be fixed by frequent tripplans

• What’s Happening:
Beam is bunched into 38 MHZ buckets

• Set externally
• No initial Slippage

Phase feedback turns on quickly
• Lower magnet current
• Beam is pushed toward outside
• Slippage begins

Radial feedback turns on after few ms
• Gain ramps up
• Beam moved to correct position
• Slippage lessons quickly



What to do with GMPS?
• Compensate with cogging:

Cogging “works” with this variation
• However, beam is pushed more than we would like

Adequate for moderate intensities

• Fix GMPS:
EE Support is looking into feedback

• Feedback should be able to be faster

More stable GMPS might be good all around

• Isolate GMPS
Move GMPS to a different feeder than pulsed devices
Under investigation
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Half a Notch
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• Notcher power supply is 
old and decrepit

• Notch is marginal on 
batch trains

• Notch is partial with 
cogging

5-10% remains in two 
buckets
Only two buckets wide

• Makes cogging hard
We could always go with a 
wider notch, but we don’t 
want to

http://www-bd.fnal.gov/cgi-mach/machlog.pl?nb=numi&action=view&page=-665&button=yes&invert=yes


Summary
• Proton demand at FNAL has been growing, and will continue to

Current experiments need more protons
NuMI is about to start using protons
Potential experiments need even more protons

• FNAL has an ongoing process of upgrade and improvement to its proton 
source

Focuses on the Booster and Main Injector accelerators
• Improvement is expected in the Booster
• Main Injector will start high-intensity operations

Improvements have been made with outside collaboration:
• Universities, involved in experiments and otherwise
• Other labs (KEK, BNL, LANL, RAL, etc.)

• Until a Proton Driver materializes, improvements in proton intensity will 
require investments throughout the accelerator complex
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