
< prev contents next >

3 Database Access
Chapter Index

1. Using JNDI
2. ACNET Devices
3. Parameter Pages
4. Universal Repository of Objects

The Secure Controls Framework's naming service provides access to three kinds of data stored in the database:

 ACNET Devices;
 ACNET Parameter Pages;
 Universal Repository of Java Objects.

3.1 Using JNDI
Secure Controls Framework uses Java Naming & Directory Interface (JNDI) as the client-side API for
database access. Actually, there is a complex internal implementation behind this interface, that provides
necessary links between server and clients, but the user do not have to think about it. For each data repository,
there is a pluggable module on the server side, that knows how to translates user's requests from JNDI to SQL
queries and feeds the data back.

JNDI defines a common mechanism for the naming service access. In our case, the directories (branches of a
tree) are represented by DirContext. Terminal items can be instances of any serializable class. The root
directory is either InitialContext or InitialDirContext. In order to specify which factory should be used
to obtain the particular tree information, Context.INITIAL_CONTEXT_FACTORY property needs to be set up.
DirContext and Context classes have a bunch of methods to browse the tree. Here is an example that gets an
ACNET device description from the database:

// Setting up default naming factory...
System.setProperty(Context.INITIAL_CONTEXT_FACTORY,
 "gov.fnal.controls.scf.naming.InitialContextFactory");

Context ctx = new InitialContext(); // Creating root context
Device dev = (Device)ctx.lookup("device/m:outtmp"); // Getting an item

Device class will be described in §4.5. The more comprehensive example is NamingTest class:

[Start SCF Naming Test]
you need to have the cached Kerberos ticket!

SCF uses the following naming convention:

 Names are case-insensitive and parsed from the left to the right;
 Name elements are separated by the forward slash (/); as soon as all JNDI names are relative to a

current context, the leading slash has no sense and is always trimmed out;
 Any characters can be used in the names, except asterisks (*) and percents (%); the semicolon (;) is

allowed but internally substituted by the colon (:); spaces are allowed inside individual name elements,

Page 1 of 3Database Access

4/30/2020https://beamdocs.fnal.gov/AD/DocDB/0015/001515/001/repositories.html

leading and trailing spaces are trimmed;

Note, that the JNDI context implementation caches all the items gathered from the server. In order to refresh
an item, the parent context of this item (or any predecessor) must be closed first with close() method.

3.2 ACNET Devices
Root context name is device. All devices are located on one level immediately after the root context. Thus, the
full name to a device is going to be device/<device-name>, where device-name is an unqualified name of
the device, with the colon on the second position and without an array index; for example: device/m:outtmp.
An alternative way to address a device is to use its device index (DI): device/#<di>. Note, however, that
despite the i:beam's index is 178212, device/i:beam and device/#178212 are two separate identical device in
the context.

The lookup() method returns an AtomicDevice instance for the regular device; or a CompositeDevice for
the family device, that contains several AtomicDevices inside. In both cases, the returned atomic devices
have:

 Extended device description in DeviceAttributes class: device index, description, node name, out-of-
service flag, and sibling names;

 Full set of available properties (reading, setting, etc.);
 Extended property description in DevicePropertyAttributes for each property: array size, FTD, and

the default event; for control property—also the list of defined operations.

Device usage is described in §4.5.

The device information is read-only and available for all authenticated users. Deleted and obsolete devices are
not shown. The items do not have JNDI attributes. Supported methods on a context are lookup() and search
() (by name). In a search filter, the asterisk can be used as a wildcard, for example: name=m:out*. The
search operation can return no more than 200 resilts, otherwise generating SizeLimitExceededException.
Use caution: as on December 2004, there are 128,840 valid devices in the database.

3.3 Parameter Pages
Root context name is either page or acnet (these notations are identical). Under the root, there are around 160
one-, two-, and three-level subtrees. For example, page/C94 has one inner level, page/W97 has three; most
pages have two inner levels. Terminal items in these trees are CompositeDevices. Each composite device
represents a single parameter page: inside, it has an ordered list of AtomicDevices and EmptyDevices (text
comments). The path to a parameter page depends on its particular location inside the inner tree, for example:
page/c94/1, page/l3/grads/1, page/w97/pag1/cryo/1.

The returned atomic devices satisfy all the requirements from the §3.2, with two exceptions:

1. Only analog alarm, control, reading, setting, and status properties are provided;
2. They can have nonzero array indices;

Parameter pages are read-only and available for all authenticated users. Empty pages are not shown. The items
have common attributes. Supported methods on a context are lookup(), list(), listBindings(), and
getAttributes().

3.4 Universal Repository of Objects

Page 2 of 3Database Access

4/30/2020https://beamdocs.fnal.gov/AD/DocDB/0015/001515/001/repositories.html

Universal repository of objects was designed to store any instances of serializable Java classes. Root context
names can be random; currently registered are object and java. Caution should be used when updating public
API of stored classes, in order to avoid serialization exceptions.

The repository supports all methods of DirContext interface. Each item in the repository (both contexts and
serialized objects) has a set of JNDI attributes that can be obtained with getAttributes() method. The
attributes can be updated by the owner of this item using modifyAttributes() methods.

The repository uses a UNIX-like authorization algorithm. Users, groups, and the group membership are
defined in the Application Index database.

The Data Browser application uses another ad hoc data provider. Its root context survey has two subcontexts:
acnet and java. They are mapped to the parameter page database and the Universal Repository,
correspondingly, and work as described above.

Common Attributes

Attribute Name #
Values Value Class Meaning

owner

1

java.lang.String Owner's user name.

group java.lang.String Group name.

permissions java.lang.Integer Access permissions in Unix format [rwxrwxrwx].
date-
modified java.lang.Date Date of the latest update.

owned java.lang.Boolean TRUE if the current user is the owner of this item; FALSE
otherwise.

description java.lang.String Optional text description.

Permissions System

Operation Required Permissions
lookup

R for the requested item, X for all predecessors.
getAttributes

bind WX for the parent, X for other predecessors.

rebind W for the item, X for all predecessors.

rebind WX for the new and old parents, X for all other predecessors.

search

RX for the current context, X for all predecessors.list
listBindings

modifyAttributes Must be the owner.

< prev contents next >
security, privacy, legal

Page 3 of 3Database Access

4/30/2020https://beamdocs.fnal.gov/AD/DocDB/0015/001515/001/repositories.html

