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The BPM signal
The purpose of this document is to introduce some simplified models of the BPM pickup signals to be used in BPM filtering and position estimation. The idea is to have signal models simple enough to make analytical comparative analysis of filtering options. Signal complexity like the effects of synchrotron and betatron oscillations and systematic errors generated by system unbalances will be considered later.
Signal model

A crude model of the BPM pickup signal is a “doublet” as shown in Figure 1. A good representation of a doublet is the sum of 2 Gaussians displaced in time:
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(1)
The value of σs is in the order of 2 to 4 ns. For more information on the signal model and constant values please follow references [1] and [2].
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Figure 1: Doublet signal from pickup

The Fourier transform of a Gaussian is also Gaussian:
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(2)
The ts delay originates a phase rotation in the transform but it does not change the magnitude.
Hence, the doublet’s Fourier transform is
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(3)
In equation (3) it has been assumed that the first Gaussian in the time domain is centered at ts=0, hence the phase rotation of its Fourier transform is zero. The second Gaussian is delayed by ts, hence its Fourier transform is affected by a phase rotation of -jωts. The Fourier transform of the doublet is depicted in Figure 2. Note that the sum of the transforms of the two Gaussians is not a Gaussian because the two terms are not in phase.
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Figure 2: Gaussian pulse and BPM Doublet’s Fourier transforms

From Eq. (3), the magnitude of the complex number
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 is periodic, always positive and swings between 0 and 2. Its period is 2π /ts and has maximums at (2k+1)π/ts and minimums at 2kπ/ts, where k=0,1,2,… The factor 
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modulates the previous term producing a fast decay of the amplitude to 0. As a consequence, the combination of the two amplitude terms generates a single maximum at about 0.25 of the sampling frequency as shown in Figure 2.
The 53MHz ringing filter
The first filtering stage is a pass-band ringing filter centered at 53.104MHz. Since the width of a bunch is only a couple of ns, the purpose of the ringing filter is to generate a signal long enough to be used for beam position measurement with low error. Position can be approximated by
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, where A and B can be considered a differential pair. |A|+|B| defines the beam intensity. 

The function p is only linear for constant intensity (i.e. |A|+|B|=constant). However, offline corrections can be applied.

The ringing filter plays the roll of a charge integrator amplifier. The size of the envelope of its output is proportional to the input’s amplitude. The ringing filter can be modeled by:
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(4)
Figure 3 shows h(t) and its envelope for ωc=53.1MHz, σ=33ns and t0=120ns. These constants have been determined experimentally.
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Figure 3: 53 MHz Ringing Filter response
The calculation of the Fourier transform of h(t) is tedious but I am including it here to have it somewhere. Please, look the result in equation (9) and skip the rest of the section unless interested in the algebra.
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(5)
where we have use the equivalence between cosine and complex exponentials. The right hand side of (5) has two terms that we called h1(t) and h2(t) respectively. We are going to work with the exponents of each term individually. 
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after completing the binomial
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Let 
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Let 
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(6)

The Fourier transform of h(t) can be calculated from equation (6) using the property 
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rearranging the exponents H1(ω) becomes:
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but 
[image: image23.wmf]2

2

0

s

ww

w

c

t

j

=

-

)

, then

[image: image24.wmf](

)

[

]

(

)

(

)

e

e

e

h

H

c

c

c

t

j

w

w

w

s

sw

f

w

w

s

p

w

-

-

-

+

-

-

=

2

4

2

)

(

0

1

2

2

0

2



(7)

The first exponential in (7) is a phase rotation proportional to the difference between ω and the modulation frequency ωc. The second and third exponentials can be combined as follow:
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hence,
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similarly, H2(ω) can be written as
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(9)
As expected, the Fourier transform of h(t) has two terms centered at ±ωc. The phase of each term is delayed proportionally to t0.
The ringing filter’s output

The output of the ringing filter u(t) is the convolution of s(t) and h(t). In the frequency domain this is expressed by the product of the Fourier transforms, U(ω)=S(ω).H(ω).
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(12)
 where 
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(13)
We can work U(ω) amplitude and phase terms independently. U(ω)‘s amplitude gain has two terms coming from H(ω), which are now modulated by the S(ω) amplitude’s gain. The two H(ω) Gaussians centered at ±ωc are now going to be shifted. Let’s look at the 1st of them:
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The exponents can be rearranged as follow:
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hence the 1st term of the amplitude gain of U(ω) can be expressed as:


[image: image38.wmf](

)

(

)

(

)

(

)

e

e

U

e

e

U

s

c

s

c

s

s

s

c

2

2

2

2

2

2

2

2

2

2

2

4

4

0

2

4

0

.

.

2

2

2

s

s

s

s

s

s

w

s

w

w

s

w

w

s

s

s

w

+

+

-

-

-

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

-

=

-



(14)
Equation (14) shows that the 1st term of the output signal’s amplitude is also Gaussian. The center of this Gaussian has shifted from ωc to (σ2/ σs2+σ2).ωc. The output signal’s amplitude is proportional to a 2nd exponential term that is a function of the system and signal constants (i.e. σs2,σ2 and ωc).
In the BPM system σs2<<σ2 so the frequency shift is negligible and so is the effect of the 2nd exponential.
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(15)
Let ωc=53.1MHz, σ=33ns and σs=4ns, then σ2/ σs2+σ2 = 0.985. The 2nd exponential is equal to 1.0011.
The second summand of U(ω) amplitude gain in equation (12) is
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(16)

So the total U(ω) amplitude gain can be expressed as:

[image: image42.wmf](

)

(

)

(

)

(

)

(

)

(

)

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

+

=

ú

û

ù

ê

ë

é

+

-

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

-

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

-

+

-

+

-

+

+

-

-

-

e

e

e

U

e

e

e

U

c

s

c

s

s

s

s

c

s

c

c

s

4

4

4

0

4

4

2

0

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

.

.

w

s

s

s

w

w

s

s

s

w

w

s

s

s

s

s

s

s

s

w

w

s

w

w

s

w

s

 (17)
We can simplify equation (17) by using the following notation:
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The phase of U(ω) can also be calculated from equation (12),
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The phase of the 1st summand in (12) involves:
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, the two Gaussians that make a doublet are rotated by the phase introduced by the filter. Similarly the phase of 2nd summand in (12) is:
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Finally, combining the amplitude and phase results, U(ω) can be written as:
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 (18)
Figure 4 shows the Fourier transforms for H(ω) and  U(ω) using the following parameters: for ωc=53.1MHz, σ=33ns and σs=3ns. Note that the two transforms are very close to each other and the approximations of equation (15) are well justified. U(ω) is not Gaussian but is very close to H(ω) which is Gaussian.
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Figure 4: Fourier transforms of H(ω) and  U(ω)
Inverse transforming equation (18) we obtain the output of the ringing filter in time domain:
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,  where u0=A.h0.
Signal model with multiple bunches

A signal with multiple bunches generates periodic trains of doublets. Equations (1) and (3) can be used to generate models of such signals in the time domain and the frequency domain of. The first part of this section analyzes an infinite train of doublets with periodicity equal to the separation between doublets (i.e. no abort gaps). The second part studies a more realistic multi-bunch signal, also infinite and periodic, but where finite number of doublets alternate with void signal spaces (i.e. abort gaps) as shown in Figure 6.
We can define an infinite train of doublets as the sum of doublets with increasing delay tk=kT. As an example we will define T=396ns which is the distance between two coalesced bunches in the Tevatron. 
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      (19)
The Fourier transform of the train of doublets can easily be expressed as a function of the transform of a single doublet.
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Equation (20) shows that the Fourier transform of a train of doublets is equal to the sampling of the transform of one doublet at the frequency 2π/T. Figure 5 shows the Fourier transform of a train of doublets separated by 396ns. We can see that the envelope is the same as in Figure 4 but now the transform is non-zero at frequencies multiple of ~2.5MHz. 
Figure 5: FFT-magnitude of a train of doublets
A typical Tevatron beam load has 3 trains of 12 bunches separated by abort gaps as shown in Figure 6. That beam structure is periodic with T~6.986μs. So, its spectrum has lines at 1/T~144KHz, the frequency at which the train of bunches repeat.
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Figure 6: Typical Tevatron load of 36 bunches and 3 abort gaps
As said, this signal in the time domain is periodic with a period T~6.986μs. If we try to come up with a simple mathematical expression for such a signal, we find some difficulties. In order to have one period T, the signal should include 12 bunches from Equation (18) and append the abort gap. The main problem is that the abort gap is not an integer multiple of the bunch length. So, we cannot simply multiply Equation (18) by a square wave of unit amplitude and duty-cycle τ/T. If we try to do so, we must introduce a fractional delay d(t) in the bunch part of the equation.
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     (21)
d(t) cannot be expressed as a integer number of T’s. This delay changes the amplitude and phase of the signal’s spectrum, but not the frequency content. In order to simplify the analysis we can start by setting d(t)=0 and worry about it later. So, the last equation becomes:
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     (22)
Since we know the spectrums of the two multiplicands in Equation (22), it is easier to work in the frequency domain and calculate R(ω) as the convolution of the two spectrums. 
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(24)
Before doing the convolution let’s analyze Equations (23) and (24). Equation (23) sows that S(ω) is a discrete spectrum. S(ω) is not zero only at frequencies that are positive and negative multiples of ωs. For the 36 bunch Tevatron load example ωs~2.5MHz. The amplitude of S(ω) is governed by the envelope S0(ω). S0(ω) is a Gaussian envelope that decays slower than the separation between the spectrum lines. This is reflected by        σs-1>>ωs, where σs-1 is ~330MHz. S(ω), is as shown in Figure 5. 

Equation (24) shows that the spectrum of U(ω) is also discrete. The separation between spectrum lines is given by ωn~144KHz. The spectrum line amplitudes are governed by a sin(x)/x envelope function. Figure 7 shows the amplitude of the U(ω) spectrum. The blue trace is the sin(x)/x continuous envelope, however the U(ω) spectrum is non zero only at the red dots. 
Figure 7: Amplitude spectrum of U(ω)
As said, the R(ω) spectrum is the convolution of U(ω) with S(ω). This can be expressed by:
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(25)
For every value of ω the output R(ω) is the infinite sum of one-to-one products between the components of U(ω) and S(ω). Note from equation (25) that one of the spectrums must be flipped around the auxiliary variable Ω  at Ω=0 and shifted by ω. As we compute R(ω) along ω the non-flipped spectrum remains fixed and the flipped one shifts by ω. For the current example, since the amplitude of U(ω) is symmetric with respect to ω=0, we choose to flip U(Ω). Obviously, U(-Ω)=U(Ω), so U(ω -Ω) is just a shifted version of the spectrum in Figure 7.
The convolution has the following features:
· The S(ω) spectrum is non-zero at multiples of ωs~2.5MHz and U(ω) is non-zero at multiples of ωn~144KHz. Overlapping and shifting, multiplying and adding, we expect that R(ω) may have a non-zero output every ~144KHz.  
· The convolution of a wide-envelope function S(ω) with a much narrower envelop function U(ω) produces an output whose envelope function is similar to the wide-envelope. 
Figure 8a shows the spectrum of R(ω) for 0<ω<1GHz . Figure 8b expands the frequency axis to show a detail of the spectrum of R(ω). In this last Figure we can appreciate that the spectrum of R(ω) has non-zero components every ~144KHz, however most of the spectrum’s energy is concentrated around frequencies that are ~2.5MHz apart. This effect can be explained as follow:
· The spectrum of R(ω) peaks every time the maximums of U(ω) and S(ω) meet, which happens every ωs~2.5MHz.

· The sidebands in the spectrum of R(ω) around the multiples of ωs are smaller and separated every ωn~144KHz. They are the sum of products between components of S(ω) with a shifted U(ω). A sort of rapidly decaying sin(x)/x effect is expected around every ωs. However, the size of the sidebands are more complicated to calculate due to two factors:
· ωs is not an integer multiple of ωn. However, there is a periodic relationship between the two frequencies given by 3ωs = 53ωn. Please note that without a periodic relationship the convolution would output mostly zeros!
· We have not considered yet the phase delay d(t) in s(t) due to the two signal multiplication model. The phase delay d(t), introduced by the model in equation (22), will add to the spectrum of  a new phase rotation factor that can be expressed by: 
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Figure 8a: Spectrum of R(ω)
Figure 8b: Spectrum of R(ω)
Synchrotron and Betatron oscillations

The analysis of Synchrotron and Betatron oscillations is extensively covered in [2]. I’ll try to summarize few of those results. The synchrotron motion modulates the arrival time of a particle:
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, where τa is the synchrotron oscillation amplitude and ωs is synchrotron frequency. 
(more to be added here)
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