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1 Introduction

A continuous but non-invasive measurement of the chromaticity during the Tevatron’s cycle would be very helpful in determining how chromaticity affects beam behaviour. We report here on chromaticity measurements with the spectrum from the 21.4 MHz Schottky monitor. All studies reported here were done at 150 GeV with uncoalesced proton bunches. Data was first taken in a parasitic mode on February 3, 2005 and later in a dedicated study on February 7, 2005. Octupoles were turned off for the measurements reported in this note. 

2 The method

The signal of the Schottky monitor contains information about the chromaticity of the beam. An early use of this method was reported in Run I [1]. Let d0 be the height of the main peak of the monitor observed at the linear tune Q, and let dk be the height of the sideband peaks at a frequency Q+kQs , where Qs is the synchrotron frequency (see Fig. 1). According to a method developed in [2], one can prove that the heights of the peaks satisfy the relation

dk=A exp(-zk/2) √[Ik(zk)]

where Ik are the modified Bessel functions and zk is related to some beam and instrumentation parameters according to

zk=[(m(r+k(s-(((/()(t]2.

Here (r is the revolution frequency of the machine, m is the revolution harmonic so that mωr is closest to the resonant frequency of the Schottky, (s is the synchrotron frequency, (( = Q (r where ( is the slip factor, ( = Q’/Q is related to the chromaticity Q’ and (t is the rms bunch length in time.
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Fig. 1: Typical Schottky spectrum for a case without linear detuning, uncoalesced beam.
The hypotheses made in the derivation of the above formula are

· The transverse motion is a linear oscillation (no detuning on amplitude), and the tune depends linearly on the particle energy through the linear chromaticity term.

· The synchrotron motion is a linear oscillation with frequency (s.

· Time averages over the total number of particles are replaced by phase space averages (ergodic hypothesis), and particle phases are randomly distributed and independent.

· Distributions in longitudinal and transverse space are Gaussian.

· The higher order terms stemming from the synchrotron motion in the evaluation of the second order momentum of the particle distribution are neglected.

The formalism has been generalized to include detuning with amplitude and nonlinear chromaticity but this will not be discussed here.

The above equations can be considerably simplified since (s<< m(r (the ratio between the two quantities is of the order of 10-6). Therefore zk(zj and if we define the ratio of the peak heights as dkj(dk/dj one has

dkj=√[Ik(z)/Ij(z)]

where z(z0. Therefore one can derive z and the chromaticity Q’ from the peak heights.

3 Procedures and data smoothing

3.1 Averaging and estimating or estimating and averaging?

Two possible procedures can be envisaged to carry out the chromaticity estimate.
· For a Schottky spectrum, the height of the peaks is evaluated. Then, the chromaticity is computed using the above equations. One obtains a chromaticity value for each spectrum, and then averages the estimate over a certain number of spectra measured in a given time to improve the precision.

· A certain number of Schottky spectra are recorded, they are averaged over time, then the height of the peaks is evaluated and the chromaticity is computed.

The two procedures are not equivalent and lead to different results, since the chromaticity is a nonlinear function of the peaks.

3.2 Smoothing over time

The analysis of the spectra shows that a strong noise is affecting the signal: in some cases the main peak is lower that the secondary, see Fig. 2. Indeed, an average over time provides a considerable improvement in the shape of the peaks (see Fig. 3). The smoothing must be obviously carried out in a stable situation, where tune are not drifting or changing. An estimate of the error associated to the time smoothing is given in Section 4.1.
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                               Fig. 2: Schottky spectrum whose secondary peak is higher than the main one (no linear detuning, uncoalesced beam).
3.3 Fitting the spectra

Since the Schottky spectrum is discrete, one can envisage a fitting of the spectra to precisely locate the height of the peaks. Fitting a function with a few free parameters provides a more robust spectrum, effectively smoothing the data over the frequency range. An empirical fit proposed in [3] is based on a sum of Lorentzians in the form 

F (() =Ac/ [((-(0)2+ (2/4]

and agrees remarkably well with the experimental data smoothed over time (see Fig. 3). No theoretical justification of the fit is available for the time being.
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                            Fig. 3: Schottky spectrum averaged over 90 s and Lorentzian fit (no linear detuning, uncoalesced beam).
4 Error estimates

4.1 Smoothing over time

For each discrete value of the Fourier Transform of the Schottky signal, we build the histogram of the N values recorded over a period where the beam conditions are stable. The distribution is far from being Gaussian (see Fig. 4). 

In order to estimate the error associated to the time smoothing, for each frequency of the spectra we evaluate the average and the standard deviation over N spectra recorded in a given time. We can imagine two opposite situations

· If the noise were a constant, the evaluated sigma would be independent of the average value. This means that the same absolute error is associated to both large and small peaks, and therefore that the relative error in the determination of large peaks is much lower.

· If the noise were proportional to the signal, the sigma would be proportional to the average (the higher the peak, the larger the noise). In this case all the peaks would be affected by the same relative error.

The analysis of data clearly shows that we are in the second case, since the standard deviation ( is proportional to the average in a frequency bin (k, i.e, (((k)((<(k>, where the constant ( varies between 0.3 and 0.5 for the analysed data (see Fig. 5 and 6, and Table I). From Table I one can also observe that the slope increases for large peaks, i.e. the relative precision of the peak is smaller for larger signals.
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Fig. 4: Histogram of the FT of the Schottky signal recorded at a given frequency: data recorded on February 7, 2005 between 17h 00m 00s and 17h 03m 59s, relative to the frequency bin of the main peak of the vertical tune.
Table I. Slope ( of the linear fit of the bin standard deviation versus the bin average for different heights of the main peaks
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Fig. 5: Standard deviation versus average of the signal of the Schottky monitor, horizontal plane, for each frequency bin, data recorded on February 7, 2005 between 17h 00m 00s and 17h 03m 59s. Data relative to the neighbourhood of the horizontal tune [left] and to the vertical tune [right].
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Fig. 6: Standard deviation versus average of the signal of the Schottky monitor, horizontal plane, for each frequency bin, data recorded on February 3, 2005 between 09h 11m 19s and 09h 12m 45s am. Data relative to the neighbourhood of the horizontal tune [left] and to the vertical tune [right].
In the hypothesis of a Gaussian distribution, one can estimate the relative error (at 95%, i.e. two sigma) on the peak height dk of the smoothing of N spectra as

(<dk>/<dk> = 2(/(<dk>√N) = 2(/√N

i.e., taking (=0.4, to have a relative precision of 10% on the determination of one peak, one needs (60 spectra, i.e. one minute in our case. A more refined estimate of the error should be carried out using a Monte Carlo on the actual distributions, which are far from being Gaussian (as also shown in Fig. 4).

4.2 Discreteness of the spectrum

Let x be the distance to the main peak in the frequency space. In the neighbourhood of the peak, one has

y(x) =ym-ax2
where ym is the height of the peak. Since the monitor samples the spectrum at discrete value of the frequency x+(, the maximal error induced by the discrete nature of the spectrum is

(y = ym-y((/2) = a((/2)2
Expanding the Lorentzian fit around a peak one has

y(x) = Ac/[x2+ (2/4](4Ac/(2 [1-4x/(2]

and therefore one has

a=16Ac/(4       and       ym=4Ac/(2       

and one can get the estimate of the maximal relative error of the peak height due to the spectrum discreteness

(y/ym= (a/ym) ((/2)2=4/(2((/2)2= ((/()2
For the case shown in Fig. 3, ((1.1 10-3, and (=1.05 10-4, one finds a maximal relative error of 0.9%. Therefore one can conclude that the error associated to the discrete nature of the spectrum is rather low (i.e. the frequency binning is narrow enough), and that a fit leads to a marginal improvement with respect to simply taking the maximum of the bins. Indeed, the fit could help in reducing the error since it takes into account all the information contained in the spectrum and not only the bin relative to the peak.

4.3 Peak height vs. chromaticity

The plots of the functions 

dkj(z)=√[Ik(z)/Ij(z)]

for the case k=1, j=0 (first sideband to main peak), k=2, j=0 (second sideband to main peak), k=2, j=1 (second sideband to first sideband) is given in Figs. 7, 8 and 9 respectively. One can observe that

· For the first sideband to main peak ratio: the sensitivity of z (which is related to chromaticity) on the ratio is good for z<1, and then becomes very low, since the ratio of the Bessel functions saturates to 1 for z(4.

· For the second sideband to main peak ratio, the shape of the curve is more linear, and the saturation slower. Therefore if one could measure the second sideband with similar relative error, it would lead to more precise chromaticity estimates compared to estimates from the first sideband.

The dependence of z is given by 

z=[(m(r-(((/()(t]2.

Where m=448, (r=3.00 105 s-1, (t(2 10-9 s, ((=Q (r with Q=20.585 and ( =2.79 10-3. One can cast the equation in the form

z=[A-B(Q’)]2
with A=m(r(t=0.269 and B=(((t/(Q=0.215. One observes that z versus Q’ is close to a parabola in the form y=x2 (see Figure 10), with a zero shifted at Q’=A/B=1.25. The function has two values on the interval [0,2.5] and therefore if the chromaticity to be measured is in this interval one can only conclude that Q’ is smaller than 2.5. We restrict ourselves to the case Q’>2.5. The relation between z and chromaticity is beneficial for the error propagation: from the plot one can see that a large error in z (for instance z between 4 and 5, i.e. a 10% error, leads to a chromaticity estimate between 10.5 and 11.5, i.e. a 5% error. The effect is stronger for lower chromaticity.

Putting it all together, one can numerically estimate a table where the ratio between the heights is plotted versus the scaled chromaticity Q’(dkj). We then estimate numerically the ratio

(([(Q’/Q’] / [(dkj/dkj]

as a function of Q’. This ratio tells us that if the peak ratio is known with a relative error (, the chromaticity will be known with a relative error ((. Results are given in Fig. 11.

· The second sideband ratio has a smaller and therefore better ( than the first one. This is due to the different shapes of the ratios shown in Fig. 7 and 8.

· The second sideband has a factor (<1 for 2.5<Q’<9, i.e. the relative error in Q’ is smaller than the relative error in the peaks.

· For Q’>10 there is a divergence for all combinations of ratios, and the method becomes imprecise.
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Fig. 7: Ratio between first sideband and main peak versus z
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Fig. 8: Ratio between second sideband and main peak versus z
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Fig. 9: Ratio between second sideband and first sideband versus z
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Fig. 10: variable z versus chromaticity in the domain of sensitivity of the method (left) and blow-up of the region of low chromaticity (right).
4.4 Chromaticity error and smoothing time
We finally consider the method based on the ratio of the second sideband and the main peak, which has the best sensitivity, to estimate the time needed to get a given relative error in the chromaticity. We have that 

(Q’/Q’=((dkj/dkj=4((/√N(1.6(/√N

(the additional factor of two stems from the sum of the relative error of each peak). Therefore the number of spectra needed for estimating the chromaticity with a relative error (Q’/Q’ is

 N=[4((/((Q’/Q’)]2. 

In Fig. 12 we plot the case for (Q’/Q’=0.1, i.e. a 10% relative error. Less than 60 spectra are needed for Q’<6.5. The dependence on Q’ is very strong.
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Fig. 11: Amplification factor ( of the relative error of the peak ratio on the chromaticity relative error versus chromaticity
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Fig. 12: Estimate of the number of spectra needed to obtain a 10% relative error on the chromaticity versus chromaticity, using the ratio second sideband to main peak These estimates are valid at Injection energy.
5 Results

We analysed the following cases (see Table II):

· Case 1: Data in the horizontal plane acquired on February 3 2005, from 09h11m19s to 09h12m45s (86 spectra), in parasitic mode, relative to the peak of the horizontal tune. This case is characterized by a main peak(500 (see Fig. 5 left), and large ratios with the sideband peaks.

· Case 2: Data in the vertical plane acquired on February 3 2005, from 09h11m19s to 09h12m45s (86 spectra), in parasitic mode, relative to the peak of the vertical tune. This case is characterized by a main peak(250 (see Fig. 5 left), and large ratios with the sideband peaks.

· Case 3: Data in the vertical plane acquired on February 7 2005, from 17h00m00s to 17h03m19s (200 spectra), in a dedicated experiment, relative to the peak of the vertical tune. This case is characterized by a strong main peak(1800 (see Fig. 6 left), and small ratios with the sideband peaks, i.e. low chromaticity.

· Case 4: Data in the horizontal plane acquired on February 7 2005, from 17h00m00s to 17h03m19s (200 spectra), in a dedicated experiment, relative to the peak of the vertical tune. This case is characterized by a rather weak main peak(200 (see Fig. 6 right), and large ratios with the sideband peaks.

Results for each case are given in Figure 13 together with the error estimate where we assumed (=0.4. The three methods give results which are compatible for data taken parasitically on February 3, whereas for the dedicated experiment on February 7 we have a systematic underestimate of the first/main peak method. More analysis is needed to understand this feature.

Table II. Height of the peaks for the four analysed case, ratio and number of spectra used in the smoothing
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Fig. 13: Chromaticity estimates using the three different ratios for the three analysed cases and the classical method.
We can compare these estimates above with the chromaticity measured by the classical method of measuring the tune change with rf frequency.

	
	Case 1(Feb 3, H)
	Case 2 (Feb 3, V)
	Case 3 (Feb 7, V)
	Case 4 (Feb 7, H)

	Classical method


	6.8
	4.7
	3.5
	8.8

	First/main

Second/main

Second/first
	7.5

6.0

5.2
	3.9

3.8

3.8
	2.3

2.8

3.5
	5.2

6.1

7.1


Table III: Comparison of chromaticity estimates using the classical method and the different synchrotron sidebands in the Schottky spectra.

We observe that with the data recorded on February 3rd (Cases 1 and 2), using the second to the main peak resulted in values closest (within 1 unit) to those measured with the classical method. For the data recorded on February 7th (Cases 3 and 4), using the second to first sideband ratio resulted in the best agreement with the classical measurement. The discrepancies are due to the systematic errors associated with both methods and also to chromaticity drift between the times the chromaticities were measured. 

Summary

We have shown that the Schottky spectra of uncoalesced bunches can be used to extract the chromaticity. Under optimum conditions these estimates are in good agreement with the chromaticity measured by changing the rf frequency. Averaging the spectra over 30 seconds reduces the statistical error to about 10%. The method used in this note has been generalised to include the contributions of a nonlinear detuning with amplitude and quadratic chromaticity to the Schottky spectra. It will be applied to understanding the spectra in the presence of octupoles.
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