
Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

Fermilab/CD
 Beams-doc-1949-v6

February 9, 2006
Version 6

Main Injector Beam Position Monitor Upgrade

Software Specifications for
Data Acquisition

Luciano Piccoli, Stephen Foulkes, Margaret Votava

Fermilab, Computing Division, CEPA

Brian Hendricks
Fermilab, Accelerator Division, Accelerator Controls Department

Abstract

This document contains the specifications for the Main Injector BPM upgrade’s front end
software. Expected operating modes and interactions with the BPM hardware are
described. Data structures for communication with the online software via ACNET are
also defined.

1

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

1 OVERVIEW.. 3

1.1 MEASUREMENT TYPES... 3
1.2 HARDWARE CONFIGURATION .. 4
1.3 REQUIREMENTS ON THE DA SOFTWARE .. 6

2 DATA ACQUISITION... 6
2.1 MAIN INJECTOR CYCLES .. 7
2.2 BUFFER LIFETIME .. 9
2.3 TIMING... 9

2.3.1 Timing Margins .. 10
2.3.2 Delays ... 10
2.3.3 Narrow Band .. 10
2.3.4 Wide Band .. 11

2.4 DATA ACQUISITION MODES... 11
2.4.1 Closed Orbit Mode ... 11
2.4.2 User Defined Turn by Turn... 12
2.4.3 Flash Turn by Turn... 12

2.5 DATA PROCESSING... 13
3 INTERFACE TO ONLINE SOFTWARE.. 13

3.1 SSDN / ACNET DEVICE MAPPING.. 14
3.1.1 SSDN Mappings and ACNET Devices for Command Lists .. 14
3.1.2 SSDN Mappings and ACNET Devices for Timing.. 14
3.1.3 SSDN Mappings and ACNET Devices for Diagnostics .. 15
3.1.4 SSDN Mappings and ACNET Devices for Front End Status .. 15
3.1.5 SSDN Mapping for FTP devices... 15
3.1.6 SSDN Mappings for Closed Orbit devices.. 15
3.1.7 SSDN Mappings for Turn by Turn devices ... 16

3.2 CONFIGURING THE BPMS .. 17
3.2.1 Commands .. 17
3.2.2 Data Structures... 17

3.3 RETRIEVING DATA ... 19
3.3.1 Headers... 19
3.3.2 Non Turn-by-Turn Data.. 20
3.3.3 Turn by Turn Data.. 21

4 INTERFACE TO BPM HARDWARE ... 21
4.1 OPERATION OF THE ECHOTEK ADC BOARDS .. 22

5 CALIBRATION.. 23
6 DIAGNOSTICS, TEST SUITE, AND SIMULATION.. 23

6.1 DIAGNOSTICS ... 24
6.2 SELF-TESTING PROCEDURES .. 24

7 MONITORING... 24
A. MAIN INJECTOR STATES.. 25
B. CHANGE LOG ... 26
C. REFERENCES.. 26

2

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

1 Overview

In compliance with the existing Accelerator Controls software architecture, the
software pieces surrounding the BPM hardware are divided into 3 layers: the front end
software running on the individual front-end computers in the readout creates in the
service buildings (usually referred to as “houses”), user applications running on analysis
nodes (Windows or Linux), and online software running on a central server (VAX) and a
few DAQ engines (Sun) providing the primary (but not exclusive) bridge between user
applications and the front end software. Figure 1 shows the software architecture. This
document will focus on the front end software. See the MI BPM Requirements document
for the overall project requirements. 1

Figure 1. Software Architecture

The remaining parts of this section will briefly outline the required measurement

types, the hardware configuration and the requirements on the front end software.
Section 2 Data Acquisition will describe the controls, configurations and data buffering
within one front-end create. Section 3 Interface to Online Software will define the
interface to the online software. The remaining sections will elaborate on calibration,
debugging, alarms and monitoring.

1.1 Measurement Types

The different types of measurements that will be accessible from the front end are
summarized as follows:

• User Defined Turn-by-Turn: A measurement of the orbit on every turn (588
53Mhz RF buckets) of every BPM for 2048 turns, performed in wide bandwidth
mode.

ACNET

BPM
UTI

Sequencer T pages

CLIB

VAX (1)

ACNET

MOOC

DAQ Front-end
Applications

Front-End (N) Sun (DAQ engines) (N)

DAQ Jobs

Windows/Linux (N)

Java Application

Ethernet/RMI

ACNET java

BPM UTI
 java

Ethernet

ACNET

BPM
UTI

Sequencer T pages

CLIB

VAX

ACNET

MOOC

DAQ Front-end
Applications

DAQ Jobs

BPM UTI
 java

Java Application

Ethernet/RMI

ACNET java

Ethernet

3

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

• Injection and Extraction Turn-by-Turn: A wide bandwidth measurement of
the orbit on every turn of every BPM for each batch of the beam injected into the
machine. It also must provide the capability to measure the extraction turn of at
least one portion of the beam extracted from the machine.

• Flash Frame: A single orbit measurement, performed in wide bandwidth mode
for each BPM. Flash frames are collected from the injection and extraction turn-
by-turn buffers. The flash frame consists of the first turn that has beam for
injections, or the last turn that had beam for extractions.

• Averaged Orbit: A single wide bandwidth measurement that consists of the
orbit averaged over the first 512 turns of the first the flash turn buffer.

• Closed Orbit: A narrow bandwidth measurement collected from all BPMs at a
rate of 500Hz

• Display Frame: A narrow bandwidth measurement triggered by the display
frame TCLK ($7B). This measurement can occur at most once per cycle and is
collected from all BPMs. Data for this measurement is pulled from the Closed
Orbit Buffer.

• Profile Frame: A narrow bandwidth measurement triggered by the profile frame
TCLK ($7A). This measurement can occur at most 128 times per cycle and is
collected from all BPMs. Data for this measurement is pulled from the Closed
Orbit Buffer.

• User Defined Frame: A narrow bandwidth measurement triggered by a user
definable TCLK. This measurement can occur at most 128 times per cycle and is
collected from all BPMs. Data for this measurement is pulled from the Closed
Orbit Buffer.

.
It is important to note that for all variations of the Turn by Turn measurement, all

BPMs should measure the same portion of a particular batch of beam.

1.2 Hardware Configuration

Based on the experience from the Recycler BPM system and the Tevatron BPM
system, the Main Injector BPM system is designed to be a VME crate holding a crate
controller with a PCMUCD daughter board, a Timing Generator Fanout (TGF) board and
up to 10 ADC boards. See Figure 2 and hardware doc #2083.

4

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

CPU TGF

ADC Cards

Figure 2. House (VME crate) Configuration

There are seven houses around the Main Injector ring, each having one VME crate that
handles up to 10 ADC cards, each of which can digitize data for 4 BPMs for a total of 40
BPMS per house. The specific models and main functions of the boards are briefly
described in the following.

• The Main Injector TGF Board is based on the Tevatron TGF Board. It is
designed to perform the following:

o Phase lock to the Main Injector RF frequency which varies from 52.8-53.1
MHz and generate a clock signal 10/7 times the RF clock for up to 10
ADC boards

o Decode the events transmitted through the TCLK and MDAT systems to
provide advanced arming signals to the crate controller so that the
hardware can be configured in time for different measurement types or
present pre-defined requests for data transfer from the crate controllers to
the online software.

o Decode the events transmitted through the Recycler Beam Sync and Main
Injector Beam Sync as well as triggering off of the Booster Extraction
Sync to derive accurate timing and triggering signals to synchronize up to
10 ADC boards with respect to the different beam arrivals.

o Configure the analog transition board, to control the signal attenuation and
frequency.

• The ADC Boards are model ECDF-GC814-FV-2 from the EchoTek Corporation.
The digitized output can be raw ADC count or digitally down-converted and
filtered to extract the strengths of the 53 MHz and 2.5 MHz components. The
output of each channel is represented by two components: a real (I for in-phase)
and an imaginary (Q for quadrature) part. Each board has 8 input channels.

• The crate controller is an MVME5500 from Motorola. This model was chosen
over the MVME2400 used in the Tevatron BPM and Recycler BPM due to its

5

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

larger memory capacity, gigabit Ethernet capability, faster processor and longer
service lifetime. This card is responsible for the communications between the
online software, TGF and EchoTek ADC boards. All controls and data transfers
to/from those boards are preformed by the crate controller.

• The PMCUCD daughter board is from Techobox Inc. It also decodes the TCLK
signal and triggers the standard ACNET/MOOC software applications
accordingly. Since this board belongs to the Accelerator Controls Infrastructure,
it will not be discussed any further in this document.

1.3 Requirements on the DA Software

In order to comply with the existing Accelerator Controls software architecture and
minimize the time needed for development and debugging, the DA software must meet
the following requirements:

• All communications between the online software and the front-ends will be
conducted via ACNET devices. This includes reading data from the front end as
well as setting acquisition and readout parameters. Internal diagnostics, however,
do not have this constraint.

• Data acquisition happens asynchronously from data readout, i.e., the EchoTeks
can be configured to take data continuously on certain triggers, but the data will
not be moved to the CPU until later. Not all data that is collected is read out to
ACNET. This implies that the front end must have buffers for each measurement
type and manage readout requests sent down from the online software.

• “Event assembly” is done by the online software, not by the front end. Therefore
a given BPM crate does not need to have any knowledge of any other BPM
crate(s). The data sent by the crate will however include information that will
allow data synchronization by the online software. That information includes
time stamps and turn counts from the TGF boards.

• The front-ends should detect state changes via TCLK reset events.
• The crate controller will run VxWorks.
• The front-end software must make use of the GBPM library that is used in the

Tevatron.

2 Data Acquisition

The front-end data acquisition system is located between the online software and the
BPM digitizing hardware. Any access to information and controls on the electronics
boards will pass through the front-end processor. The information includes beam
position data, calibration data and diagnostics data among other configuration parameters.

Crate
Controller

TGF Filter
Echotek

- Board Read/Write

Online
Software

- Data request
- Command

 - Raw data - Position data

6

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

Figure 3. Communication Path

The communication between the online software and the front-end processor is
ACNET/MOOC based, while the communication between the front-end processor and
other electronics happens over the VME backplane. See Figure 3

During a measurement, the digitized and filtered data is first stored in the memory on the
EchoTek boards and then transferred to the crate controller after the end of beam TCLK
event. The data is saved in a set of buffers on the crate controller so that it may be
accessed at another point in time. The depth and number of logical buffers that reside in
the crate controller will vary depending on configuration and total physical memory2.
The actual buffer implementation will be discussed in the Software Design Document3.

2.1 Main Injector Cycles

Each Main Injector cycle is uniquely identified by a machine state. This state
information is transmitted on the MDAT system and is valid at the TCLK reset for the
main ramp (any one of 20 or so various TCLKs). See Appendix A for a list of main
injector states and cycles.4

Because the operation of the main injector can be very complex, each machine
state can have radically different requirements on the type and frequency of
measurements. The behavior of the front ends is described by a set of acquisition
specifications (one per state) that are re-configurable by the user. An acquisition
specification for a given state will describe a series of commands to be executed during a
cycle that setup and trigger the EchoTek modules to acquire measurements. A given
acquisition specification can switch to and from narrow and wide band measurements and
between 53MHz or 2.5MHz mode. The format of the acquisition specification is
discussed in greater detail in Section 3.2: Configuring the BPMS

Since the measurement requirements for a cycle can be quite demanding, there
may not be enough time for the measurement to be taken and transferred to the processor.
As a result of this, the processor may leave data on the EchoTek board to be read out
after the ‘end of beam’ TCLK event has been received. All data that is taken during a
cycle will not be available until after the ‘end of beam’ TCLK event has been received.

 The front end system is guaranteed a minimum of 50msec at the beginning of a
cycle (i.e., from the ‘ramp reset’ TCLK to the beginning of the first measurement) to
clear buffers and prepare for data taking. It is also guaranteed a minimum of 500msec
between cycles (i.e., from the ‘end of beam’ TCLK event to the next ramp reset) to
collect and process all of the data stored in the EchoTek modules for that cycle.

For each ramp reset, the front end software will:

1. Determine cycle state
2. Load acquisition specification for that state.
3. Execute the commands in the acquisition specification in time order (see

NOTE)

7

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

4. Upon receipt of the ‘end of beam’ TCLK, collect and process all unread
data from the EchoTek modules (i.e., wide band data)

5. Wait for next reset

• NOTE: The user defined turn by turn request needs to be assembled as a complete
event across all houses. Since each house is independent from the others, the
event assembly is done by the online software which is reading asynchronously
from each house with a variable and long (seconds) latency. Data in the front ends
boards needs to be protected during this time from overwrites and race conditions.
To facilitate this, the user defined turn by turn buffer is only updated when the
pretrigger ACNET device is non zero. That way, the pretrigger ACNET device
can be set to zero after the measurement is taken to preserve that data until it is
read out.

8

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

2.2 Buffer Lifetime
All buffers (profile, display, flash average, flash first turn, and flash) must be kept valid
from the end of the current cycle until the ‘end of beam’ TCLK is received for the next
cycle of the same type. To achieve this, data is read from the EchoTeks into a set of
buffers that is separate from the main set. Once the ‘end of beam’ TCLK has been
received the newly collected data is copied into the state buffers, replacing data from the
previous instance of that state. Data is always readout to ACNET from the state buffers.
See figure 4. The only exception to this is the user defined turn by turn buffer. It must
not be overwritten unless the user defined turn by turn ACNET device is non zero.

Figure 4 – Buffer Diagram

2.3 Timing

The DA system will be configured to operate in one of two basic running modes:
wide bandwidth and narrow bandwidth. The former will be used for turn by turn
measurements, while the latter will be used for the various types of closed orbit.

9

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

2.3.1 Timing Margins

This system will require periods of time when data acquisition is not possible. There are
currently three identified periods:

• Start of cycle – There will be at least 50ms between the TCLK reset event and the
arrival of beam. This is to allow the front end to configure the timing boards and
EchoTeks

• Mode Change – The front end must be able to change modes in less than 10ms,
i.e. - going from Closed Orbit to Turn By Turn.

• End of Cycle – There will be at least 500ms between the end of beam signal and
the beginning of the next cycle in order for the front end to read data off of the
EchoTeks.

2.3.2 Delays

It should be noted that in a given running state of the Main Injector, the time delay from
the Main Injector turn marker (MIBS $AA) as seen by the TGF until the actual bunch
passing is fixed but different at each BPM location. In order to ensure that the ADCs are
triggered at the same time relative to the actual bunch passing of the same turn, 4 layers
of delays are implemented:

• Global Delay – A delay applied to all BPMs
• House Delay – A delay applied to all BPMs in a given house. There is a different

house delay for measurements triggered off of BES and MIBS/RRBS.
• Board Delay – A delay applied to all BPMs connected to a particular EchoTek

board
• Channel Pair Delay – A delay applied to a single BPM

There will be different delays for different particles that circulate in different directions.
Delays can be set using the diagnostics console application, and are effective at the start
of the next Main Injector cycle. Delays for different injection and extraction points are
specified in the acquisition specification.

For measurements triggered by the BES signal, the timing board will apply the delay
from the BES signal. For all other measurements the delays will be applied starting at the
next MIBS $AA that is received.

2.3.3 Narrow Band

For narrow band measurements, the front-ends do not need to be synchronized to the
same portion of a batch of beam; they only need to cover the same length in time. The
front ends are averaging so much data that it is not a requirement that the timing be
synchronized better than a turn or two. In this mode, the TGF simply counts the Main
Injector revolution/turn markers and uses that counter to generate an interrupt at 500Hz to

10

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

inform the crate controller of a pending data acquisition. When the pre-set number of
samples (burst count) has been collected, the first EchoTek board will issue a collection-
done interrupt to notify the crate controller for data transfer.

2.3.4 Wide Band

For wide band measurements, the front-ends in all the houses will need to be
synchronized to the same specific turn, as well as the same portion of a batch of beam.
This is achieved by setting the TGF to wait for a particular “start event”. Upon the
occurrence of this “start event”, the TGF generates an interrupt to inform the crate
controller of a pending data acquisition and repeats the following steps for the desired
number of turns: wait for the next “turn event”, apply appropriate time delays and
generate trigger signals for the EchoTek boards. When the pre-set number of triggers has
been received, the first EchoTek board will issue a trigger-counter interrupt. The TGFs
have tight and consistent latency specifications and the main differential latency is caused
by the distribution of the timing signals to all the sub racks, which can be correct by
adjusting the house delays.

Depending on the trigger type

2.4 Data Acquisition Modes

Corresponding to the various measurement types it needs to handle, the data acquisition
system has a few different operation modes. These modes are mutually exclusive due to
the need for specific configurations of the triggering and filtering in the
EchoTek boards for a specific mode. These modes are:

• Closed Orbit
• Turn by Turn
• Flash

2.4.1 Closed Orbit Mode

This is a narrow bandwidth mode of the BPM system and is triggered by the data
acquisition specification. Several buffers of closed orbit data will be kept by the front
end:

• Profile Frame Buffer – 128 points deep. Data is taken from the most recent
closed orbit measurement and placed in this buffer every time a TCLK $7A is
received.

11

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

• Display Frame Buffer – A single measurement. Data is taken from the most
recent closed orbit measurement and placed in this buffer every time a TCLK $7B
is received.

• User Defined TCLK Buffer – 128 points deep. Data is taken from the most
recent closed orbit measurement and placed in this buffer every time a certain
TCLK is received. This TCLK is defined through an ACNET device.

• Fast Time Plot Buffer – Data is taken from the most recent closed orbit
measurement every 2 milliseconds. This buffer is independent of state. It tracks
several pieces of data useful for plotting the following:

o Position from a particular BPM
o Intensity from a particular BPM
o A particular input’s I value
o A particular input’s Q value
o Sum signal for each channel (magnitude of A + magnitude of B)

The front end software must be able to store a profile frame buffer and display frame
buffer for each state. At the beginning of each Main Injector state its profile and display
frame buffers will be erased. If the front end is not collecting closed orbit data and a
profile frame or display frame or a fast time plot is called for, an error value will be
placed into the appropriate buffer.

The measurements are triggered at a 500 Hz rate. This rate is sourced by the TGF board
through a decimate-by-N counter to down-sample the Main Injector RF frequency. The
value of N, and thus the trigger rate, can be adjusted through the turn modulus/decimation
register on the TGF board. At 500 Hz, the DA system has about 200 us idle time between
triggers.

2.4.2 User Defined Turn by Turn

User defined turn by turn measurements can occur at any time during a cycle, but can
only be taken once per cycle. A turn by turn measurement will be taken when it is
enabled in the command list and when the ACNET device that is passed down with the
command has a non zero value. The turn by turn measurement will be the only one
preformed during that cycle. Upon the successful completion of the turn by turn
measurement, the data will be transferred off of the EchoTeks to the crate controller. The
positions and intensities of the beam at each BPM location will be calculated in the same
fashion as closed orbit data. The position and intensity as well as the raw I and Q values
will be stored for later retrieval through ACNET. There must be a separate turn by turn
buffer for each state.

2.4.3 Flash Turn by Turn

The front end software will be able to take turn by turn measurements for particle
injection and extraction, triggered by the relevant beam sync clock event. The system

12

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

must support taking 512 turns per measurement, and be able to store up to 20
measurements for each state.

If there are multiple injections in the same cycle, the system must provide the capability
to measure the first turn for each portion of beam injected in the machine. Successive
injections from the Booster happen at a maximum rate of 15 Hz.

If there are multiple single turn extractions in the same cycle, the system must provide the
capability to measure the extraction turn of at least one portion of beam extracted from
the machine.

The system must generate an Averaged Orbit by averaging the injection turn-by-turn data
for the first injection into the Main Injector in each cycle. The Averaged Orbit will be the
average of the first 16 turns with beam. This data will be used for machine injection
closure.

2.5 Data Processing

After the EchoTek boards have completed data acquisition, the crate controller will read
out the I-Q pairs. The modulus of each channel (M) is then calculated:

)(0
22 MQIGM −+×=

Where G and M0 are the gain and offset of the electronics. Finally the beam position
(D) and intensity (S) can be determined according to:

M
BA

BA D
MM
MMgD −

+
−

×=

BA MMS +=

Where g is a polynomial to convert the unit-less quantity to millimeters (nominally 26
mm), D M is the mechanical offset that was surveyed relative to the BPMs electrical center
before the BPM was installed in the ring.

For each BPM, the position (D) and intensity (S) are to be stored along with the raw I
and Q pairs.

3 Interface to Online Software

This section defines how data and commands are exchanged between the front-end DAQ
software and the online software. ACNET will be the means of transportation of data and
commands between the front-end DA and the online software.

Requests may be made in parallel by disjoint applications, and some mechanism for
avoiding conflicts must be designed and implemented.

13

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

BPM data read by the online software will be organized according to the data structures
defined in section 3.3. Online applications that make use of the old system must be
changed to handle new data formats.

The supported ACNET protocols will be SETDAT, RETDAT and Fast Time Plot (FTP).
The snapshot protocol (not to be confused with a BPM snapshot) will not be supported by
the front-end DAQ. The front-end must be able to generate FTP data at a rate up to 500
Hz.

3.1 SSDN / ACNET Device Mapping

The following suggested SSDN numbers will be used to map to the appropriate ACNET
devices. There is at least one ACNET device associated with each SSDN number.

The SSDN number is an 8 byte field split into 4 2-byte pairs. See the MOOC front-ends
document for a detailed field description:

http://www-bd.fnal.gov/controls/micro_p/mooc_front_ends.html

For reading BPM data, this project will use the recycler BPM model of object id:

• 0x0020 for BPM Control
• 0x0021 for BPM RETDAT/SETDAT
• 0x0022 for BPM FTP data

3.1.1 SSDN Mappings and ACNET Devices for Command Lists

Each house will have an ACNET device for each possible machine state. The device will
take the form I:xxCMyy where xx is the house number (10, 20, 30, 40, 50, 6S, 6N) and
yy is the machine state. Note that the machine state is represented in hex, so machine
state 11 on the MI40 front end would be I:40CM0B. These devices will be used to send
command lists down to the houses, the data structures of which are discussed in section
3.2.1. The SSDNs for these devices take the form 0000/0020/yy00/2094 where yy is the
machine state, which is also represented in hex.

3.1.2 SSDN Mappings and ACNET Devices for Timing

There are five ACNET devices for every house that are used for setting delays.
I:BxxBRD (SSDN 0000/0020/0000/2087) is for setting the board delay, I:AxxHSD,
I:MxxHSD and I:PxxHSD (SSDN 0000/0020/0000/2086) are used for setting the house
delays and I:BxxCHD (SSDN 0000/0020/0000/2089) is for setting the channel delay
where xx is the house number (10, 20, 30, 40, 50, 6S, 6N). I:BxxBRD and I:BxxCHD
are array devices.

14

http://www-bd.fnal.gov/controls/micro_p/mooc_front_ends.html

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

3.1.3 SSDN Mappings and ACNET Devices for Diagnostics

There are two ACNET devices for diagnostics, I:BxxACQ (SSDN 0000/0020/0000/2082)
for sending an acquistion specification to the front-ends and I:BxxADV (SSDN
0000/0021/0003/2100) for reading back the diagnostics buffer.

3.1.4 SSDN Mappings and ACNET Devices for Front End Status

There are four devices that are used for collecting status from the front ends. I:xxHIST
(SSDN 0000/0020/0000/2092) will return the software start time, the time of the last
mode change, the last TCLK received and the time the last TCLK was received.
I:xxSTAT (SSDN 0000/0020/0000/2091) will return the status of various timing signals
as they are seen by the timing card. I:xxCONF (SSDN 0000/0020/0000/2093) will return
the number of EchoTeks installed into the crate as well as the closed orbit frequency.
I:xxVER (SSDN 0000/0020/0000/2094) will return the versions of the MIBPM and
GBPM libraries, as well as the firmware versions on the EchoTeks and TGF. The xx in
the device name refers to the house number.

3.1.5 SSDN Mapping for FTP devices

Each channel can have an I and Q value. Data from a pair of channels (i.e. A and B
plates) can be manipulated to generate intensity and position information. There will be a
position and intensity measurement for the horizontal channel, and a position for the
vertical channel for both proton and anti proton data. One EchoTek card contains eight
channels, allowing 4 BPMs to be read out. A complete house with 10 EchoTek boards
can read out 40 BPMs, each one with 2 channels. The total channels in a house is 80, and
each channel has an I and Q value associated with it.

The following FTP devices have been defined:

• 0000/0022/0000/22YY : This device contains the I, Q, and sum signal
information for each channel, where YY corresponds to channel 0x00-0x50. The
first element in the device is I, the second is Q and the third is the sum.

• 0000/0022/0001/22YY : This device contains position and intensity information
for protons or pbars, where YY corresponds to a BPM number 0x00-0x25. The
first element is position while the second element is intensity.

The maximum number of FTP devices provided by one house is 120:
 1 I/Q/SUM x 80 channels + 1 p/pbar * 40 position/intensities = 120

3.1.6 SSDN Mappings for Closed Orbit devices

The front end will supply ACNET devices for the following closed orbit measurements:

15

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

• Profile Frame (I:xxBPPR for scaled, I:xxBRPR for raw)
• Display Frame (I:xxBPDF for scaled, I:xxBRDF for raw)
• User Data (I:xxBPUF for scaled, I:xxBRUF for raw)

The xx corresponds to the house number, which can be 10, 20, 30, 40, 50, 6N, 6S.

Data will be available in both scaled and raw form. There will be one ACNET device for
each house, for each closed orbit measurement type. The device will return the closed
orbit measurements for all the BPMs in that house. The SSDN for these devices will take
the for of 0000/0021/000Y/000X where:

• X corresponds to the measurement type, which can be one of the following
values:

o 0 – Profile frame
o 1 - Display frame
o 2 – User

• Y corresponds to how the data is represented:
o 0 - Raw I/Q values
o 1 - Scaled positions and intensities

3.1.7 SSDN Mappings for Turn by Turn devices

The front end will supply ACNET devices for the following turn by turn measurements:

• User defined Turn by Turn (I:TTnyyy for scaled, I:TRnyyy for raw)
• Injection/Extraction Flash (I:TFnyyy for scaled, I:RFnyyy for raw)
• First turn Flash (I:xxBPFF for scaled, I:xxBRFF for raw)
• Closed orbit flash (I:xxBPFT for scaled, I:xxBRFT for raw)

The n corresponds to the BPM alignment, V for vertical and H for horizontal. The yyy
corresponds the the zero padded BPM number. The xx corresponds to the house number,
which can be 10, 20, 30, 40, 50, 6S, 6N.

Data will be available in both scaled and raw form. For user turn by turn and
injection/extraction flash turn measurements there will be one ACNET device per BPM
while for the first turn flash and closed orbit flash there will be one ACNET device per
house. The SSDN for these devices will take the for of 0000/0021/ZZ0Y/210X where:

• X corresponds to the measurement type, which can be one of the following
values:

o 3 – User defined turn by turn
o 4 – Injection/extraction flash
o 5 – First turn flash
o 6 – Closed orbit flash

• Y corresponds to how the data is represented:
o 0 - Raw I/Q values
o 1 - Scaled positions and intensities

16

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

• ZZ corresponds to the EchoTek channel number that a particular BPM is hooked
up to. This value is only used for the user defined turn by turn and the
injection/extraction flash measurements.

3.2 Configuring the BPMS

Each MI state has an associated acquisition specification. The acquisition specification
for a given cycle must be known by the front-end software before the MI cycle is started.
The specification for any cycle can be changed at any time by online users. However if
the cycle is currently running the front-end will wait until the end of the cycle to update.

The front-end will not perform any checking of the individual commands in the
acquisition specification as they are sent down from the online software. It is the
responsibility of the online software to validate the command list. However, the front-end
software will provide the means to read back the cycle specification, but no history of
commands for any cycle will be kept.

3.2.1 Commands

There are to be four commands that can be passed down to the front end: filter, turn by
turn, closed orbit and flash. Each command must have a delay parameter which will
determine when they get run during a cycle. This delay parameter is measured in
milliseconds from the cycle reset TCLK.

The closed orbit command has no other parameters. While it is active, closed orbit data
will be taken at a 500 Hz rate. The front end will also listen for profile and display
TCLKs, and update the profile and display buffers accordingly. If a profile or display
TCLK is received when the closed orbit command is not active, the profile or display
buffer will be filled with data containing a position of 888.

The turn by turn and flash commands are similar. The turn by turn command can only
take one measurement per cycle while the flash command can take up to 20. Both
commands need a trigger value, as well as a turn delay and bucket delay.

The filter commands changes settings on the filter board to specify the type of beam in
the machine, as well as its intensity and frequency. This also tells the front end which set
of delays to load (proton or pbar).

3.2.2 Data Structures

The data sent to the front-end DAQ from the BPM library and/or applications is based on
the following C data structures. All data is big endian. The front-end software will

17

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

support a list of at most 32 commands during a given cycle. It also at this time supports
the four commands discussed in 3.2.1.

3.2.2.1 Constants

/* Commands */
const long FILTER = 0;
const long TURN_BY_TURN = 1;
const long CLOSED_ORBIT = 2;
const long FLASH = 3;

/* Particle type */
const long MIBPM_PROTON_PARTICLE_TYPE = 0;
const long MIBPM_PBAR_PARTICLE_TYPE = 1;

/* Filter frequency */
const long MIBPM_2_5MHZ_FILTER = 0;
const long MIBPM_53MHZ_FILTER = 1;

/* Filter attenuation */
const long DB0 = 0;
const long DB6 = 1;
const long DB12 = 2;
const long DB18 = 3;
const long DB24 = 4;
const long DB30 = 5;
const long DB36 = 6;
const long DB42 = 7;
const long DB48 = 8;

/* Data Source */
const long MIBPM_BEAM_DATA_SOURCE = 0;
const long MIBPM_CALIBRATION_SOURCE = 1;
const long MIBPM_SOFTWARE_DIAG_SOURCE = 2;
const long MIBPM_HARDWARE_DIAG_SOURCE = 3;

/* Bunch type */
const long MIBPM_UNCOALESCED_BUNCH_TYPE = 0;
const long MIBPM_COALESCED_BUNCH_TYPE = 1;

/* Data type */
const long MIBPM_RAW_DATA = 0;
const long MIBPM_SCALED_DATA = 1;

3.2.2.2 Commands

typedef struct {
 int type;
 int delay; // Specified in miliseconds
 union {
 int particle; // Proton or Pbar (FILTER)
 int enabled; // (All other commands)
 } datum1;

18

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

 union {
 int frequency; // 53 MHz or 2.5 MHz (FILTER)
 int turnDelay; // (TURN_BY_TURN)
 int bsync; // MIBS, RRBS or BES (FLASH)
 } datum2;
 union {
 int attenuation; // (FILTER)
 int bucketDelay; // (TURN_BY_TURN)
 int turnDelay; // (FLASH)
 } datum3;
 union {
 int bucketDelay; // (FLASH)
 } datum4;
} MIBPM_STATE_COMMAND;

typedef struct {
 int size;
 MIBPM_STATE_COMMAND commands [MIBPM_STATE_COMMAND_SIZE];
} MIBPM_STATE_COMMAND

3.3 Retrieving Data

3.3.1 Headers

The current version of the MI_DATA_HEADER is 1. The status variable inside the
MI_DATA_HEADER structure will be set to a non-zero value if there is some problem at the
crate level. Upon receiving a MI_DATA_HEADER with a non-zero status value the online
software will ignore the data. All data is big endian.

The time data structure in the MI_DATA_HEADER is the time stamp of the first data frame.

const int MI_BPMS_PER_HOUSE 40;
const int MI_TURN_SCALED_BLOCK_SIZE 512;
const int MI_MAX_FRAMES 512;

typedef struct BPM_TIME
{

ulong timestamp; /* timestamp in second (GMT) */
ulong nanoseconds; /* nanoseconds after timestamp */

};

typedef struct MI_TRIGGER_INFO
{

int type; /* MIBS / RRBS / BES / Closed Orbit */
int value; /* trigger value */

};

typedef struct MI_DATA_HEADER
{
 int endidan_type;
 int version; /* data structure version */
 int status; /* transaction status, this is
 defined later in this document.

19

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

 */
 BPM_TIME time; /* timestamp */
 unsigned int turn_number; /* starting turn number */
 unsigned int num_turns; /* number of turns in data */
 double time_in_cycle; /* starting time in cycle */
 int data_type; /* flash/profile/turn by turn… */
 MI_TRIGGER_INFO trigger_info; /* trigger information */
 int data_source; /* beam or calibration */
 int particle_type; /* proton/pbar */
 int scaled_data; /* scaled/raw */
 int calibration_id; /* calibration data ID number */
 int beam_frequency;
 int attenuation;
};

typedef struct MI_STATE_DATA
{

int reset_event; /* TCLK event which began the beam cycle */
 int machine_state; /* MDAT / TCLK RESET */
 int bpm_state; /* not yet defined */
};

3.3.2 Non Turn-by-Turn Data

The front end will return either an MI_ORBIT_DATA_SCALED or MI_ORBIT_DATA_RAW data
structure depending on the type of data requested for all measurements except Turn-by-
Turn and FTP. All data is big endian. The bpm_status array inside the MI_FRAME_DATA
data structures will be set to one of the following values:

• 0 – OK
• 1 – To little beam intensity
• 2 – Alarm level – if we want alarm limits
• 3 – Saturated
• 4 – Hardware error
• 5 – Channel not in use

typedef struct MI_FRAME_DATA_SCALED
{
 MI_DATA_HEADER header;

MI_STATE_DATA state_data; /* machine state information */
int num_detectors;

 int frame_number; /* ordinal number in front-end */
 int bpm_status[MI_BPMS_PER_HOUSE]; /* status information for
 bpms, defined later in this
 document. */
 float positions[MI_BPMS_PER_HOUSE]; /* position values */
 float intensities[MI_BPMS_PER_HOUSE]; /* intensity values */
};

typedef struct MI_FRAME_DATA_RAW
{
 MI_DATA_HEADER header;
 MI_STATE_DATA state_data; /* machine state information */
 int num_detectors;

20

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

 int frame_number; /* ordinal number in front-end */
 int bpm_status[MI_BPMS_PER_HOUSE]; /* status information for
 bpms, defined later in this
 document. */
 short i[MI_BPMS_PER_HOUSE*2]; /* Each channel has an I and Q */
 short q[MI_BPMS_PER_HOUSE*2]; /* value, and there are two */
 /* channels per BPM. */
};

3.3.3 Turn by Turn Data

The front end will return either an MI_TBT_DATA_SCALED or MI_TBT_DATA_RAW data
structure depending on the type of data requested for all Turn-by-Turn measurements.
All data is big endian.

typedef struct MI_TBT_TURN_SCALED
{
 unsigned long turn_number; /* turn number */
 float position; /* position in mm */
 float intensity; /* beam intensity */
};

typedef struct MI_TBT_TURN_RAW
{
 unsigned long turn_number; /* turn number */
 short i[2]; /* There is an I and Q value for */
 short q[2]; /* every channel, 2 channels per */
 /* BPM */
};

typedef struct MI_TBT_DATA_SCALED
{
 MI_DATA_HEADER header;
 MI_STATE_DATA state_data;
 int status;
 int num_turns;
 MI_TBT_TURN_SCALED turn_data[MI_TURN_SCALED_BLOCK_SIZE];
};

typedef struct MI_TBT_DATA_RAW
{
 MI_DATA_HEADER header;
 MI_STATE_DATA state_data;
 int status;
 int num_turns;
 MI_TBT_TURN_RAW turn_data[MI_TURN_RAW_BLOCK_SIZE];
};

4 Interface to BPM Hardware

21

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

The front-end software interfaces to the BPM hardware (which consists of a Timing
Generator Fanout Board and one or more EchoTek 814gc boards) over the VME bus.
The front-end software is responsible for configuring the hardware as well as retrieving
data from it over the VME bus.

4.1 Operation of the EchoTek ADC Boards

Each EchoTek board provides 8 receiver channels of 14-bit, 80 MHz (maximum) analog-
to-digital conversion and digital processing in a single 6U VME slot. The clock for the
EchoTeks is supplied by the timing card. They are clocked a 10/7 times the Main
Injector RF clock. They support 3 operating modes:

1. Gate Mode – Data is collected as long as the external sync signal is active.
2. Trigger & Free Run – Data collection begins at the rising edge of the external

sync signal, or when the Software Sync Bit is written, and continues until the
Trigger Clear bit is written.

3. Trigger & Counted Burst – A preprogrammed number of samples (burst count) is
acquired and processed with each occurrence of an external sync pulse, or writing
to the Software Sync Bit.

In the trigger modes, the external sync signal and trigger a delay specified in the
SYNC_DELAY registers. The SYNC_DELAY registers are 12 bit counters that are
clocked at the ADC sample rate. Each register controls a pair of receivers – 1 & 2, 3 & 4,
5 & 6, 7 & 8.

The 8 channels on each EchoTek board can be independently configured to output one of
3 types of data:

1. Count Data – The FPGA on board the EchoTek generates a continuous counting
sequence and puts the data directly into memory. This bypasses the whole chain
of analog-to-digital conversion and digital processing. This mode is intended for
checking the data handling within the board and check VME interactions between
the board and system controller.

2. Raw Data – The ADC counts are stored into the memory directly, bypassing the
digital processing. The samples are right justified with the two least significant
bits always set to zero. Samples are stored in pairs to form a 32 bit word.

3. Receiver Data – The ADC counts are digitally down-converted, decimated and
filtered to output an interlaced sequence of 24bit I’s and Q’s. The 24bit I’s and
Q’s can either be truncated to 16bit and then packed into 32bit words or directly
output as 32bit words.

The memory for each channel is a 128K x 32 bit SRAM operating in a FIFO fashion.

The procedure to initialize the boards through the driver is as follows:

22

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

1. Read in all the setup files (*.ini and *.ch), parse the files and then create an array
of “ghSetup” structures in the crate controller’s memory by calling
ecdr814gcReadSetup() in the startup script.

2. Install a driver for each board by calling ecdr814gcInstall()
3. Open the driver by calling open()
4. Allocate data buffers in the create controller’s memory for each gray chip

channel. The buffers must be 8 bit aligned to the address of the corresponding
gray chip channel.

5. Map the allocated buffers to those on the EchoTek boards by calling
ecdr814gcSetBufferChBrd()

6. Copy the desired setup from the “ghSetup” array to all the boards by calling
ecdr814gcCopySetupAll()

7. Set the channel-pair delays by calling ecdr814gcIoctlCopySyncDelayAll()
8. Program all the Gray chips by calling ecdr814gcProgramGrayAll()
9. Set up the DAQ conditions by calling ecdr814gcRdSetupAll()
10. Set the trigger counters by calling ecdr814gcSetNumTrigsAll()
11. Reset the boards by calling ecdr814gcIoctlClearAll()

Steps 4 through 11 need to be repeated when changing to a different operation mode.

After initialization, the boards need to be enabled by calling ecdr814gcEnableSyncAll().
Then the boards cab be disabled and read out by calling ecdr814gcReadAll(). These two
function calls form a complete DAQ cycle.

5 Calibration

The front-end software is able to return raw data as well as calculated beam position to
the online applications. Raw data does not require any processing on the front-end
whereas calculated beam position requires the use of calibration constants.

Calibration constants are defined by offline processing. Data used for calibration will be
collected from the front-end systems, running on calibration mode, and will have its data
type marked as calibration data.

At startup time the front-end downloads current calibration constants. The calibration
constants are retrieved by the front-end system via ACNET variables. The use of ACNET
insures that the front-end automatically receives the latest calibration set. The calibration
set used by the front-end is identified by a database ID. This ID should be included in the
metadata that is returned when calculated data is requested by an online application.

6 Diagnostics, Test Suite, and Simulation

23

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

6.1 Diagnostics

The front-end software will provide diagnostics data via ACNET devices. It will provide
means for operators or programs to detect a bad or misbehaving BPM.

Some diagnostics operations follow:

• Generate closed orbit data and return known closed orbit values
• Generate turn by turn data and known values for a single turn by turn

measurement
• Generate single turn data and return known values for a single turn measurement
• Check BPM hardware – Run test procedures on the BPM hardware, if supported
• Get Buffers – Return current contents of all (or selected) data buffers

6.2 Self-Testing Procedures

The front-end software should be able to perform tests on itself and on the associated
BPM hardware. Results from self-tests should be available to user applications. Hardware
tests will be performed if supported, i.e., the hardware should have the capability of
receiving triggers from the front-end and generate data for self-tests. Software self-testing
will be used for validating the data path from the time data is read out from the BPM until
it is ready to be read via ACNET devices.

7 Monitoring

The front-end software should periodically send status and statistics messages to a
monitor, via ACNET devices. There should be a central monitoring application that
receives data from all BPM front-ends and points out BPMs that have problems.
Data from the front-end includes:

• Buffer Usage
• Up Time
• Available Memory
• Status of processes
• Number of requests
• Main Injector Status

24

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

A. Main Injector States

Description TCLK Reset Event
MI
State

Extraction
Energy

Pbar stacking $14, $29, $8E, $80 3 120 Gev
Pbar stacking cycle to MI abort $14, $29 3 120 Gev
Protons to Tevatron $15, $2B, $4D 4 150 Gev
Tevatron proton cycle to MI abort $15, $2B 4 150 Gev

Slip stacking and NuMi target
$14, $19, $23, $8D, $8E,
$A5 5 120 Gev

Pbar stacking and NuMi target
$14, $19, $23, $8D, $8E,
$A5 7 120 Gev

NuMi target cycle to MI abort $19, $23 8 120 Gev
Pbars from Recycler to Tevatron $2E, $2A, $40, $E4 11 150 Gev
Protons from Tevatron $2E, $2A, $5D 12 150 Gev
Slip stacking and SY120 $14, $13, $21, $80, $30 14 120 Gev
Proton Beam from Booster to MI Abort $13, $2D 15 8 Gev
Proton Beam from Booster to Accumulator $16, $2D, $93 16 8 Gev
Proton Beam from Booster to Debuncher $16, $2D, $85 16 8 Gev
Stacking and SY120 $14, $13, $21, $80, $30 17 120 Gev
Pbar Beam from Recycler to Recycler $2D, $E4, $E0 19 8 Gev
Pbar Beam from Accumulator to Recycler $91, $2D, $E0 20 8 Gev
NuMi target $19, $23, $A5 21 120 Gev
Pbars from Accumulator to Tevatron $91, $2E, $2A, $40 23 150 Gev
SY120 $13, $21, $30 24 120 Gev
Proton Beam from Booster To Recycler $2D, $E2 25 8 Gev
Proton Beam from Recycler to MI abort $2D, $E3 25 8 Gev
Pbar slip stacking $14, $29, $8E, $80 28 120 Gev
Tevatron pbar cycle to MI abort using
protons $2E, $1C, $2A 30 150 Gev

Table 1. Main Injector States as of 10/1/05

25

Main Injector BPM Software Specifications for Data Acquisition, Version 6, 2/09/06

B. Change Log

Version Issue Date Description Of Change
1 11/15/05 Initial Revision
2 11/17/05 Updated data structures and ACNET devices
3 12/02/05 Miscellaneous fixes
4 12/07/05 Added Main Injector Cycles Section

C. References

1 Alberto Marchionni et. al., ‘Requirements for the Main Injector BPM Upgrade’,
 Beams-doc-1786
2 Luciano Piccoli, ‘MIBPM Front-End Software Memory Requirements Review’,
 Beams-doc1955
3 Luciano Piccoli, ‘Main Injector BPM Software Design’, Beams-doc-2036
4 Dave Capista, ‘MI BPM Configurations for Operational States’, Beams-doc-1996

26

	
	1 Overview
	1.1 Measurement Types
	1.2 Hardware Configuration
	1.3 Requirements on the DA Software
	2 Data Acquisition
	2.1 Main Injector Cycles
	2.2 Buffer Lifetime
	2.3 Timing
	2.3.1 Timing Margins
	2.3.2 Delays
	2.3.3 Narrow Band
	2.3.4 Wide Band

	2.4 Data Acquisition Modes
	2.4.1 Closed Orbit Mode
	2.4.2 User Defined Turn by Turn
	2.4.3 Flash Turn by Turn

	2.5 Data Processing

	3 Interface to Online Software
	3.1 SSDN / ACNET Device Mapping
	3.1.1 SSDN Mappings and ACNET Devices for Command Lists
	3.1.2 SSDN Mappings and ACNET Devices for Timing
	3.1.3 SSDN Mappings and ACNET Devices for Diagnostics
	3.1.4 SSDN Mappings and ACNET Devices for Front End Status
	3.1.5 SSDN Mapping for FTP devices
	3.1.6 SSDN Mappings for Closed Orbit devices
	3.1.7 SSDN Mappings for Turn by Turn devices

	3.2 Configuring the BPMS
	3.2.1 Commands
	3.2.2 Data Structures
	3.2.2.1 Constants
	3.2.2.2 Commands

	3.3 Retrieving Data
	3.3.1 Headers
	3.3.2 Non Turn-by-Turn Data
	3.3.3 Turn by Turn Data

	4 Interface to BPM Hardware
	4.1 Operation of the EchoTek ADC Boards

	5 Calibration
	6 Diagnostics, Test Suite, and Simulation
	6.1 Diagnostics
	6.2 Self-Testing Procedures

	7 Monitoring

