

Phase Space and Antiproton Production at Fermilab

Dave McGinnis Fermilab Accelerator Division

faccelerator Division Entroduction

- A key feature to the success of a high energy collider is the beam brightness or luminosity.
- The beam brightness is determined by particle motion or evolution though the accelerator chain.
- To first order, the motion of particles in an accelerator can be described by simple harmonic motion around an ideal trajectory or energy.
- This motion can be portrayed using the concept of phase space.
- This talk will use the Fermilab Tevatron collider as an example of the importance of phase space in high energy colliders
	- ¾ The use of antiprotons in the Tevatron pose additional challenges that are clearly illustrated with the concept of phase space.

Accelerator Division **Fermilab Complex**

 The Fermilab Collider is a Antiproton-Proton Collider operating at 980 GeV

Accelerator Division **Luminosity**

$$
L=\frac{3\gamma f_{o}}{\beta^{*}}BN_{\overline{p}}\frac{N_{p}}{\epsilon_{p}}\frac{F\left(\beta^{*},\theta_{x,y},\sigma_{p,\overline{p}}^{L},\epsilon_{p,\overline{p}}\right)}{\left(1+\frac{\epsilon_{\overline{p}}}{\epsilon_{p}}\right)}
$$

The major luminosity limitations are

- \triangleright The number of antiprotons (BN_{pbar})
- \triangleright The proton beam brightness (N_p/ $\varepsilon_{\sf p}$)
	- Beam-Bea m effects
- ¾ Antiproton emittance
- \triangleright F<1

c - a $\overline{L}^{(\min)} = n \sigma L$ $\bm{\mathop{p}}$ Φ = $=$ n \circ

- $n_c = 2$
- σ_a = 70 mb
- \blacksquare L = 3.0x10 32 cm $^{-2}$ -sec $^{-1}$
- Φ = 15×10^{10} hr $^{-1}$

ccelerator Division **Antiprotons and Luminosity**

- The strategy for increasing luminosity in the Tevatron is to increase the number of antiprotons
	- ¾ Increase the antiproton productio n rate (Run 2 Upgrades)
	- \triangleright Provide a third stage of antiproton cooling with the Recycler
	- \triangleright Increase the transfer efficiency of antiprotons to low beta in the Tevatron

Accelerator Division **Antiproton Production**

- \blacksquare 1×10^8 8 GeV pbars are collected every 2-4 seconds by striking 7x1012 120 GeV protons on a Nickel target
- 8 GeV Pbars are focused with a lithium lens operating at a gradient o f 760 Tesla/meter
- 30,000 pulses of 8 GeV Pba r s are collected, stored and sto chastically cooled in the Deb uncher and Accumulator and Recycler Rings
	- \triangleright The stochastic stacking and cooling increases t he 6-D phase space den sity by a factor of 600x106
- 8 GeV P bars are acceleratedto 150 GeV in the Main Injector and to 980 GeV in the TEVATRON

- $\textsf{\textbf{N}}_{\textsf{\textbf{p}}}$ is the number of protons on target
- P is the production ratio of the number of antiprotons produced to N_p

¾ Typically about 15-20x10-6

¾ Mostly a function of the collection aperture

 $\overline{}$ ${\mathsf T}_{\mathsf{rep}}$ is the cycle time

 \triangleright Mostly a function of the cooling rate

Accelerator Division **Number of Protons on Target**

First Stage of Acceleration

- ¾ \triangleright Can be thought of as a 750kV DC voltage source.
- ¾ \triangleright The maximum voltages is limited by how much the air can "stand off"

Fermilab
The Accelerator Division Second Stage of Acceleration – The Linac

Fermilab
RF Accelerator Division RF Power Amplifiers –- The Tetrode

- The tetrode is in itself a miniature electron accelerator
- \blacksquare The filament boils electrons off the cathode
- \blacksquare The electrons are accelerated by the DC power supply to the anode
- The voltage between the grid to cathode controls how many electrons make it to the anode
- \blacksquare The number of electrons flowing to the anode determines the current into the load
- \blacksquare The tetrode can be thought of as a voltage controlled current source
- \blacksquare Tetrodes work well at low frequencies (< 400MHz)

Fermilab Fermilab
RF Accelerator Division RF Power Amplifiers –- The Klystron

The klystron is in itself a miniature electron accelerator.

Fermilab

- \blacksquare The filament boils electrons off the cathode.
- ▙ The electrons are accelerated by the DC power supply to the anode.
- The velocity (or energy) of the electrons is m odulated by the input RF.
- Because o f velocity m odulation, some electrons are slowed down, some are sped up..
- ▙ **The electrons drift to the anode.**
- \blacksquare If the o utput cavity is placed in the right place, the electrons will bunch up at the output cavity which will excite an high intensity RF field in the output cavity.
- Klystrons nee d a minim um o f 2 cavities but can have more for larger gain.
- A klystron's size is determined by the size o f the bunching cavitie s.
	- ¾ The size of these cavities i s inversely proportio nal to the frequ ency
	- ¾ Klyst rons are used at high frequencies (> 600 MHz)

Accelerator Division **Synchrotrons**

- RF cavities accelerate particles
- ▉ Dipoles are used to bend particles
	- \triangleright The more energy the particles get, the stronger magnets have to be to keep the beam on track
	- > As the particles go around faster, they arrive at the RF
cavity sooner then they did on
the previous turn
	- > The frequency of the RF
cavity must be increased so that the RF is pointing in the right direction when the beam arrives the next turn
	- \triangleright The magne RF frequency must be
synchronized to keep the
particles in the ring
- Quadrupoles are used to focus particles

Accelerator Division **Transverse Phase Space**

- Quadrupoles are needed for focusing p articles
- ▙ $\textcolor{black}{\bullet}$. Not all the particles are on the perfect orbit
- \blacksquare At any given location in the ring, each particle has a unique transverse position <u>and</u> angle w.r.t to the ideal orbit
- \blacksquare The number of times that a particle circles phase space during one com plete trip around the ring is the tune o f the machine.
- \blacksquare The tra nsverse emittance is the area (mmmrad) in phase s pace that contains a collectio n of particles.

$Accelerator$ Division **Injection Oscillations in Synchrotrons**

■ If beam is not injected onto the ideal orbit, the ensemble in phase space will oscillate about the ideal position

Fermilab

- Magnets are not perfect
	- ¾ Octupole components will act as a amplitude dependent quadrupole
	- \triangleright The betatron tune will be a function of the particle's phase -space amplitude
	- \triangleright The phase space will smear out after many turns
	- ¾ The oscillation will seem to dam p
		- Landau damping
	- \triangleright The emittance will grow
		- •• The density decreases

Multi-turn Injection

- Because the Linac is a single pass acclerator, the rate at which the klystrons can pour energy into the beam and still achieve the final beam energy (400 MeV) limits the beam current. \rhd P=I x V
- п The total charge in the Linac is the beam current x pulse length.
- \blacksquare To get a lot of charge, the pulse length in the Linac must be made very long (>20uS)
- Since the next accelerator circumference (the Booster) is only 2.2uS long, the Linac beam must be wra pped around the Boo ster many times (turns)

Multi-turn Injection

- We want dense beams
	- ¾High intensity
	- ¾Low emittance
- ▙ How is more than 1 turn added to the Booster without
	- ¾ "kicking" out the proto ns that are already in the Booster?
	- \triangleright Or increasing the emittance?
- We cheat Liouville's theorem (sort-of)
	- ¾ The Linac actually accelerates H- ions (one proton, t wo electrons) which b asically ha v e the same mass as a proton but opposite charge.
	- ¾Because of the opposite charges, the H - ions "merge" when passed through a single
magnet
		- Care has to be taken to not magnetically strip t he electr o ns from the H- ions
	- ¾ The "merged" beams woul d diverge again if passed through a second magnet.
	- ¾ \triangleright Before the "merged" b Before the "merged" beams pass through a
second magnet
		- • \cdot they pass through a thin carbon file which strips of the weakly bou nd electro ns from the H- ions.
		- • \cdot Because the foil is thin, and the protons have high energy, the foil will not bother the protons.

 Place a Hyd rogen atom in an electric field and strip away the electron

Fermilab

- Protons will congregate on the Cesium metal surface
- \blacksquare The metal surface has free electrons and the Cesium makes it easier to steal electrons from the metal (low w ork function).
- Every once in awhile, an incoming proton will smack a proton with two electrons attached off the metal wall.
- Because of its negative charge, the H- ion will move away from the negative surface.

Fermilab

Accelerator Division **Resonance Lines and Tunes**

- \blacksquare The betatron tune is the number of "wiggle s "∵ a particle makes as it goes around the machine once
- \blacksquare The tune is proportional to the machine focusing or the quadrupole strength (lattice)
- \blacksquare If the tune is an integer:
	- ¾A dipole error would amplify turn after turn
	- \triangleright The amplification is proportional to the dipole error
- \blacksquare If the tune is an $\frac{1}{2}$ integer a quadrupole error would amplify e very other turn, e tc…
- \blacksquare For an infinite set of multipoles
	- > The tune should **not** be a rational number
	- ¾ \triangleright The growth rate is inversely proportional to the multipole order
	- \triangleright The growth rate is proportional to the multipole strength

- The beam in the Boo ster is limited by space charge tune shift
	- ¾ Moving particles produce a magne tic field on the other particles which act as a de - focusing lens
	- ¾ De focusing force is

Fermilab

- • proportional to
	- the beam current
	- 1/Energy
- a function of the phase space amplitude
	- Not all the particles get the same tune shift
- Slip-stacking is a technique to double the number of particles
	- ¾ Done at relatively high energy so space charge is not a problem
	- \triangleright Takes advantage of the enormous amount longitudinal "room " available in the Main Injector
		- •• Big circumference
		- •Big momentum aperture

FREE CONDITIONS SLIP STACKING

1. First Booster Batch accelerated in Booster2. First Booster Batch injected onto MI central orbit with RF system **A** 3. First Booster Batch slightl y accel erat ed in MI with RF System **A.** Second Booster Batch accelerated in Booster 4. Second Booster Batch injected onto MI central orbit with RF system B 5. Second Booster Batch slightly decelerated in MI with RF System B 6. W ait till batches line up and sna p on RF system C while turning of RF systems A & B

Fermilab Fermilab Antiproton Production –- Slip Stacking

Fermilab Fermilab Antiproton Production –- Slip Stacking

- The RF Voltage not only accelerates the beam but forms a barrier to keep particles from wandering awa y in time.
- The magnitude of the RF Voltage determines the size of this barrier or "bucket"

- A particle's energy error and time (phase) error are plotted on ^a"phase space" plot.
- The RF bucket causes a particle with a phase space error to wander about phase space in an ellipse. The shape o f the ellipse is determined by the strength of the RF voltage.

Formilab
The Accelerator Division **Longitudinal Phase Space**

- \blacksquare The beam consists of many particles.
- \blacksquare Each particle has its own energy and phase error.
- \blacksquare The area in phase space that contains all the particles is called the longitudinal emittance (eV-Sec.)

Accelerator Division **Antiproton Debunching**

ccelerator Division Longitudinal Emittance and Slip Stacking

■ \blacksquare To obtain a short bunch length, the longitudinal emittance of the proton bunches should be small as po s sible.

Fermilab

- A small longitudinal e mittance requires that energy separation between the A & B batches be $\,$ as small as possible during the final capture.
- The small energy separation requires that the RF buckets of the A & B batches not o verlap
- The bucket heights which is proportional to the RF vol tage must be very small.

Accelerator Division **Beam Loading**

- Low Frequency (< 100 MHz) R F power sources, such as tetrodes, are typically current sources.
- F The particle beam is accelerated with an electri c field or a "voltage" gradient.
- \blacksquare An RF cavity can be tho ught of as a narrow band transformer that converts current to voltage.
	- ¾ The lar ger the cavity impedance, the more voltage that can b e obtained f or the same RF power.
- The particle beam travelling through the RF cavity is also a "current" source (especi ally a t t hese energies).

Accelerator Division **Beam Loading Compensation**

 $I_{\rm ff}$

 $I_{\rm fb}$

z

 $\mathbf{I}_{\mathbf{h}}$

 \mathbf{I}_{gen}

Accelerator Division Main Injector 120 GeV Bunch Rotation

Fermilab

Accelerator Division **Antiproton Production**

Accelerator Division **Antiproton Aperture**

- A n agg res sive beam-b a s e d alignment program is under dev elopment to bring the m easured aperture to the physical aperture.
	- ¾ \triangleright Would increase the stacking rate by over a factor of 2 \triangleright
	- ¾T he final d esign goal is to achieve 77% of the p hysical aperture whi ch will i ncrease in s t a cking r a t e by 40%
- Г The goal for this year is to inc reas The goal for this year is to increase the aperture for each
plane from 65% to 72% of the available physical aperture plane from 65% to 72% of the available physical aperture
which would result in a 20% increase in antiproton production rate

- For maximum aperture, we would like the beam to go through the center of the quadrupoles
- \blacksquare You cannot trust the absolute position of beam position monitors.
- If the beam goes off center through a quadrupole, it gets a kick. The kick is proportional to
	- \triangleright strength of the quad
	- \triangleright the offset of the transverse beam position with respect to the center of the quad.
- \blacksquare To m easure how far off center the beam is in the quad
	- \triangleright Measure the beam trajectory downstream of the quad with BPMs
	- ¾ Change the Qua d current (strength)
	- \triangleright Measure the difference in beam position
		- If the b eam goe s though the center of the quad, the trajectories will be the same
	- \triangleright Change the position of the beam through the quad with an upstream trim magnet until the quad does not steer the beam.

Accelerator Division **Beam Based Alignment**

- Necessary components
	- ¾ Beam positio n system
	- \triangleright Individual control of quad strength
	- \triangleright Trim magnets to control the orbit
- \blacksquare Problems in the Debuncher
	- > Beam position system
		- Pbar current extremely low
		- Secondary spray
		- Reverse proto n beam loading
	- ¾ Quad strength
		- Quad s are on busses had to add lot s of shunt s
	- \triangleright Trim magnets
		- • There is no space in the Debuncher to add trim magnets
		- • Orbit correction is done b y placing quads on remote control stands
	- ¾ Overall
		- Align with rev erse protons
			- Large setup overhead
		- Stack with forward pars
		- •Just isn't the same!

ccelerator Division Stochastic Cooling

- **Electron Cooling works** well for narrow, intense beams
- **Stochastic Cooling** works well for wide, diffuse beams
- **Stochastic cooling re**arranges phase space by placing particles into the "empty holes" in phase s pace.

Accelerator Division **Stochastic Cooling**

- Stochastic cooling uses feedback
- A pickup electrode measures an "error" signal for a given pbar.
	- ¾ This error signal could be the pbar's position or energy
	- ¾ The pickup signal can be extremely small, on the order of 1 pW
	- ¾ The Debuncher ^pickups are cooled to 4 Kelvin to reduce the effect of thermal noise and 300 Kelvin "shine"
- ٠ This signal is processed and amplified
	- \triangleright The gain of the Debuncher
systems is about 150 dB (a factor
of 10^{15}) of 10^{15}
- The opposite of the error signal is applied to the pbar at the kicker

 \triangleright The kicker signal can be as large
as 2 kW

- The ability of a pickup to resolve a single pbar is proportional to the bandwidth of the pickup
- To resolve a single pbar in the Accumulator, the pickup bandwidth would have to be greater than 6x1017 Hertz
- The maximum bandwidth of the cooling systems we have built so far is 4 GHz (f_{max} =8 GHz), so on average there are 2x10 8 pbars underneath a pickup in the Accumulator at any given time
- But these other pbars are sources of noise for a given pbar that needs to be cooled…

Accelerator Division **Stochastic Cooling Pickups**

rccelerator Division **Traveling Wave Tubes**

- The power amplifier for stochastic cooling must have a large bandwidth
- Traveli n g wave tubes (TWTs) can have bandwidths as l arge as an octave (${\sf f}_{\sf max}$ = 2 ${\sf x}$ ${\sf f}_{\sf min}$)
- TWTs have a helix which wraps around an electron beam
	- \triangleright The helix is a slow wave electromagnetic structure.
	- \triangleright The phase velocity of the slow wave matches the velocity of the electron beam
- At the input, the RF modulates the electron beam.
- ▉ The beam in turn strengthens the RF
- $\textcolor{red}{\bullet}$ Since the velocities are matched, this process happens all along the TWT resulting in a large amplification at the output (40dB = 10000 \vec{x})

Accelerator Division **Stochastic Cooling Kicker**

Accelerator Division **Stochastic Cooling Mixing**

 \blacksquare Since each pbar has a slightly different energy than any other pbar, every pbar will take a different time to travel around the accelerator

Fermilab

- This causes the pbars to continually mix up so that the noise contribution of the other pbars underneath the pickup averages to zero in the long run.
- \blacksquare . This effect is caused Mixing. The mixing factor is given as how many turns around the accelerator does it take for the beam to randomize its sample underneath the pickup
	- ¾ Proportional to momentum spread
	- \triangleright Proportional to the maximum frequency of the cooling system

Before Mixing

After Mixing

Fermilab Fermilab Antiproton Stacking –- Stacktail System

- $\textcolor{red}{\bullet}$ Beam is injected onto the Injection Orbit
- \blacksquare **Beam is**

Fermilab

- ¾Bunched with RF
- \triangleright Moved with RF to the Stacking **Orbit**
- ¾ Debunched on Stacking orbit
- Stacktail pushes and compresses beam to the Core orbit
- \blacksquare Core Momentum system gathers beam from the Stacktail
- \blacksquare Accumulator Transverse C ore Cooling system cools the beam transversely in the Stacktail and Core

Fermilab Fermilab Antiproton Stacking –- Stacktail System

 The time evolution of the antiproton phase space during cooling is best described by the Fokker-Plank Equation \blacksquare Optimum profile that maximizes d ψ /dE is exponential $log(V)$ $\Delta \rm{E}_{s}$ Φ_{α} E_1 E_2 E_3 V_1 $V₃$ $log(\psi)$ Ψ_1 Ψ_3 E_1 E_2 E_3 $\Delta \rm{E}_{s}$ Φ _o t ∂E $\frac{\partial \Psi}{\partial t} = -\frac{\partial \Phi}{\partial E}$ ∂ ψ $\phi_c = \frac{\Delta E_c}{T} \psi = eV_0 f_0 \psi \sum Re{G_n(E)}$ n $0.04 \rightarrow 0.06$ o $c = \frac{\Delta E_c}{T_0} \psi = eV_0 f_0 \psi \sum_n Re \{G_n(E)\}$ E $({\rm ev}_{\rm o} {\rm f}_{\rm o})^2 \frac{{\rm E}_{\rm o}}{c} \psi \frac{\partial \Psi}{\partial {\rm E}} \sum \left|{\rm G}_{\rm n}({\rm E})\right|^2$ n $_{0}$ $_{\circ}$ $_{\circ}$ $_{0}^{2}$ of $_{0}^{2}$ $\frac{E_{0}}{c}$ o $A_{\rm h} = \frac{1}{2} \frac{\Delta E_{\rm h}^2}{T_{\rm o}} \frac{\partial \psi}{\partial E} = \frac{1}{4} (eV_{\rm o}f_{\rm o})^2 \frac{E_{\rm o}}{\eta f_{\rm o}} \psi \frac{\partial \psi}{\partial E} \sum_{\rm o} |G_{\rm n}(E)|$ $(\text{eV}_\text{eff}_\text{o})^2 \frac{\text{E}}{\text{E}}$ 4 1 T_{α} ∂E E 2 $\frac{1}{2} \frac{\Delta E_h^2}{T_o} \frac{\partial \psi}{\partial E} = \frac{1}{4} (eV_0 f_0)^2 \frac{E_o}{\eta f_0} \psi \frac{\partial \psi}{\partial E} \sum_{n}$ $\psi \frac{\partial \psi}{\partial \overline{\psi}}$ η $\overline{\partial E}$ = $\phi_h = \frac{1}{2} \frac{\Delta E_h^2}{T} \frac{\partial \psi}{\partial \overline{z}}$ $_{\rm H_d}$ E $G_n(E) = g_0 e$ $= g_0 e^{-}$ $_{\rm H_d}$ E $\psi(E) = \psi_0 e$ $\begin{pmatrix} f_{\text{max}} \\ f_{\text{min}} \end{pmatrix}$ $\big($ $\begin{pmatrix} W_{f_{_{0}}}\end{pmatrix}$ $\big($ $φ_m = η$ minmax 2 o o $m = \eta f_0 \frac{E_d}{E}$ f $ln($ f $\frac{W}{f}$ E f_{\circ} $\frac{E}{A}$

Fermilab

■

■

Phase Space and Antiproton Production at Fermilab - McGinnis ⁴³

∆ $\rm E_c$

 $\Delta \rm{E}_c$

- To push fast cycle times the gain of the Stacktail is increased
- More power in the Stacktail can transversely heat the core beam
	- ¾ Longitudinal tanks transversely misaligned give transverse kicks
	- \triangleright Residual dispersion gives transverse kick
		- $\,\cdot\,$ Dispersion is defined as the transverse position as a function of energy
		- \cdot Longitudinal kick in dispersion changes local reference orbit which results in a betatron oscillation

Accelerator Division **StackTail Heating**

Accelerator Division **Recycler Electron Cooling**

Accelerator Division **Electron Cooling**

- The velocity o f the electrons is made equal to the average velocity of the antiprotons.
- \blacksquare The antiprotons undergo Coulomb scattering in the electron "gas" and lose energy, which is transferred from the antiprotons to the co-streaming electrons until some thermal equilibrium is attained.
- \blacksquare The cooling rate is:
	- ¾ P roportional to the electron current
	- \triangleright Inversely proportional to the electron temperature (emittance)
	- > Independent of the number of antiprotons
- \blacksquare Electron Cooling works well for narrow, intense beams

ermilap

- Electron cooling commisioning
	- \triangleright Electron cooling was demonstrated in July 2005 (two months ahead of schedule).
	- \triangleright By the end of August 2005, electro n cooling was being used on every Tevatron shot
- $\textcolor{red}{\bullet}$ Electron cooling goals
	- \triangleright Can presently support final design goal of rapid transfers (30eV-Sec/2hrs)
	- \triangleright Can presently reliably support stacks of 250x1010 (FY06 design goal)
	- ¾ Have a chieved 500 mA of electro n beam which is the final desig n goal.

- \blacksquare In most cases, it is better to have the beam spread out uniformly throughout the accelerator
	- ¾ Momentum aperture
	- \triangleright Instabilities
	- ¾ Stochastic cooling
- Collider detectors want the beam contained in a short bunch
- \blacksquare Coalescing is a method of combining many (~11) low intensity short bunches into a single high intensity short bunch.

Accelerator Division Coalescing

$f_{\text{c}celerator Division}$ Coalescing

Step 3. Wait until the bunches have rotated 90 degrees. The bunches will have a small energy sprea d but a long time sprea d.

Step 4. Turn off 53 MHz RF and abruptly turn on the 2.5 MHz RF.

$f_{\text{c}celerator Division}$ Coalescing

Step 5. The entire collection of bunches will rotate around the 2.5 MHz bucket.

Step 6. Wait until the collection of
bunches have rotated 90 degrees and are all ali gned i n tim e.

Step 7. Snap on the 53 MHz RF and turn off the 2.5 MHz RF. All the bunches are now contained in a single 53 MHz RF Bucket

- \blacksquare A key feature to the success of a high energy collider is the beam brightness or luminosity.
- \blacksquare The b eam brightness is determined by particle motion or evolution though the accelerator chain.
- To first order, the motion of particles in an accelerator can be described by simple h armoni c motion a roun d an i deal trajectory or energy.
- This motion can be portrayed using the concept of phase space.
- There are many more accelerator phenomena that are clearly described with simple phase space concepts
	- \triangleright Transition crossing
	- ¾ Intra-beam scattering
	- ¾ Bea m-beam tuneshift
	- \triangleright Etc..