2% Fermilab

Kerberos Module for Java

Reference Guide

Andrey Petrov, apetrov@fnal.gov
Version 3.1.0 < October 12, 2005

Copyright © 2005 Universities Research Association, Inc.

This document describes the reusable software library providing a uniform and simplified
procedure of strong user authentication in Java, based on Kerberos V5 protocol. The existing
JRE implementation is extended to offer a better interoperability with various user environments,
memory credential cache support, and additional functions. The ultimate goal of this project is to
make the authentication procedure inconspicuous for the users and straightforward for the
developers.

Most of the information in this Guide is based on the previous draft paper [1]. The API and
implementation details, however, have been significantly changed since that time. Thus, a
programmatic version described in the draft is obsolete and should not be used anymore.

Table of Contents

1. INEOAUCTION. ...eeiiiiiiiee ettt ettt e ettt e e e ettt e e e e e b e e e e e aabeeeeeatseeeeenssaeeeeannsaesaeensssseaeeannnns 1
2. BaSIC CONMCEPLS. ...ttt ettt ettt ettt et e et e e bt e st e st e e sbe e e sabte e ebaeeesaneeesanees 2
3. Kerberos Module OVEIVIEW..........uuiiieiiiiieeeiiieee ettt e e et e e e etaee e e e e aaee e e e eaaaeeas 4
4. How the Authentication WOTKS..........coooiiiiiiiiiiiiiceeee e e e e e e e e e e eeeees 5
5. Credentials SRATING.......cooiiiiiiiiiie et ettt et 7
6. CONTIZUIALION. ....coiiiiiiieiiieie ettt ettt ettt st sne e e eneesneesanee e 8
T TESTIIZ ettt ettt ettt et e e ettt e s bt e e e ettt e e sab b e e e eabbee e eabbeeeeabbeeeeabteeeebreeeane 10
8. Authentication 1IN Web BrOWSETS.......uuuuuueeieeeeeeeeeeeeeeee et 13
0. PEISPECIIVES. ....eiiuiiiiiiiiiee ettt ettt et ettt et e e e e e nane 17

1. Introduction

Continual expansion of on-line threads in the recent years forced the software developers to think
of making improvements in their security tools. Most mechanisms of communication channel
protection and access control depend on a proper authentication of principals, i.e., users and
services. Once logged in, a principal must be able to present its credential everywhere throughout
the system. This authentication procedure should not be too complicated, because otherwise the
users will pay no heed to it.

It is hard to create a reliable and fair authentication system from scratch. For the application

Kerberos Module for Java Reference Guide ¢ v. 3.1.0 1



software developers, taking advantage of an external security infrastructure is a more favorable
way, especially if such a system is already in use. This approach provides yet another benefit:
Utilization of a trusted third-party system increases confidence of the users and those who
enforce security policies.

A while ago Fermilab adopted Kerberos V5 protocol as a uniform security solution. That
infrastructure, including client utilities, has been installed on a vast number of computers
throughout the lab. When people started using it for common network services, such as rlogin
and fip, it becomes a routine to get the fresh Kerberos ticket every morning. In this way, almost
all the users have had a reliable and platform-independent digital proof of identity on their
desktops.

It looked very attractive to use this kind of authentication in Java applications, as well. The Java
Runtime Environment (JRE) included an implementation of Kerberos and GSS-API, thus no
additional libraries were needed. That would make the logging procedure swift and less annoying
than asking a password: As soon as a valid credential is available on the desktop, applications
could use it to verify the user's identity and establish secure communication channels.

In reality the JRE's implementation of the Kerberos protocol has several drawbacks, which make
it hard to use without changes in the existing environment.

1. In order to obtain credentials, the com.sun.security.auth.module.Krb5LoginModule
class uses an inconsequential searching procedure. As a matter of fact, each operating
system has a number of specific locations where the credentials can be found. Whether a
Kerberos ticket is good, can be decided only after it has been read and parsed. A
LoginException should be thrown only if no credentials have been found at all, or all of
them were bad. It is acceptable to find an invalid ticket, if the subsequent readings return a
valid one.

2. Memory credential caches not implemented (with the exception of Windows LSA).

3. The configuration is different when the protocol is used from web-startable applications,
applets, or as a server-side component. Some files have to be locally pre-installed.

4. The GSS-API is far too general and incomprehensible for the occasional application
developers [2].

The described Kerberos Module for Java (KMJ) addresses these and few other issues by
extending the JRE and adding some new functionality. The product can be used as a base
authentication component for various Java application, on both server and client sides.

2. Basic Concepts

This chapter gives some basic description of Kerberos protocol and GSS-API for the purpose of
this guide.

Kerberos is a network authentication protocol defined in RFC 4120 [3] as:

13

.. a means of verifying the identities of principals, (e.g., a workstation user or a
network server) on an open (unprotected) network. This is accomplished without

Kerberos Module for Java Reference Guide ¢ v. 3.1.0 2



relying on authentication by the host operating system, without basing trust on host
addresses, without requiring physical security of all the hosts on the network, and
under the assumption that packets traveling along the network can be read, modified,
and inserted at will.”

Some explanation of the protocol can also be found in [4]. Here is an outline of how it works:
® Kerberos authenticates principals. The principal is either a user or a service.

® Each principal is required to have its key registered with the authentication server (AS).
The key is either a value derived from the user's password, or a random value stored in a
keytab file.

® In order to get initially authenticated, the client uses an authentication program, such as
kinit, to exchanges some data with AS. The client principal's key is used as an encryption
key in this exchange. If the authentication succeeds, the clients obtains a ticket-granting
ticket (TGT).

® The TGT usually remains valid for several hours and is stored in a credential cache. The
actual cache type (file or memory), its location, and the data format may vary among
different authentication programs and operating systems.

e Every time when the client is going to contact some remote service, it requests a ticket
from the ticket granting server (TGS) for that service principal, using the existing TGT.

® The local credentials can be forwarded to a remote host by means of GSS-API.

The Generic Security Service Application Program Interface (GSS-API) [5] was designed to
describe how various mechanisms should be used to transfer credentials between two hosts.
RFC 4121 [6] specifies the way GSS is applied to Kerberos.

GSS aims to create a common security context for two peers. In order to establish the context, the
two nodes need to perform an authentication by exchanging one or several tokens. The
authentication can be either mutual, when both nodes present credentials to each other, or
non-mutual, when only the client is authenticated to the server.

A GSS context can be used to learn the names of both parties, and to apply some per-message
security services on a communication channel between them. These services are: encryption,
message integrity codes (MICs), sequence detection, and replay detection.

Sun included an implementation of Kerberos and GSS-API in JRE starting from the version 1.4.
Technical notes can be found in [7].

Kerberos authentication is a part of the Java Authentication and Authorization (JAAS) service.
The principal top-level class, responsible for obtaining credentials on the local computer, is
com.sun.security.auth.module.Krb5LoginModule. Its weaknesses were discussed earlier.

The principal class of the GSS-API implementation is org.ietf.jgss.GSSContext. Kerberos
mechanism is used with a proper object identifier (OID).

Kerberos Module for Java Reference Guide ¢ v. 3.1.0 3



3. Kerberos Module Overview

Kerberos Module for Java supports the following functions:

An automated credential discovery on multiple operating systems;
Reading of memory credential caches;
The keytab authentication of service principals without TGT requests;

A simplified and uniform configuration procedure for applets, web-startable applications,
and server-side components;

A simplified API for sharing credentials between two peers;
The web authentication framework;

Integration with custom user and logging databases through pluggable modules.

All the binaries (compiled for VM 1.4) and configuration files are shipped in a single jar file,
kerberos-client.jar. The module will run on JRE 1.4.2 and 1.5. No additional libraries are
required (with an exception of the Tomcat authentication components that are supposed to be
used inside the web server environment). The Kerberos configuration file krb5. conf included in
the public distribution may need to be customized as described in the following chapters. After
that, the project jar should be rebuilt and sealed with a new signature.

The project's root package is gov.fnal.controls.kerberos. It contains two principal classes:

KerberosLoginContext

The main class performing the authentication of a local principal and sharing the credential
with a remote host. The class is a singleton without public constructors. Its shared instance
can be obtained from the static getInstance method. Can also be started from the
command line as described in § 7.

KerberosLoginApplet

The client-side applet with a graphical user interface for the web authentication.

Other packages contain various classes which are, in most cases, not used directly:

catalina

Components for the Tomcat web server.

login

An implementation of the credential reading procedures, including native libraries for the
memory cache access.

util

Miscellaneous useful gadgets.

Kerberos Module for Java Reference Guide ¢ v. 3.1.0 4



4. How the Authentication Works

The main class, KerberosLoginContext, 1S an extension of
javax.secutity.auth.login.LoginContext that defines most the general login and logout
procedures. In case of the Kerberos authentication, a login simply means reading of the current
principal's credential, which is either a cached ticket-granting ticket, or a secret key stored in the
keytab. The credential must already exist on the local system, because the Module does not
request ticket-granting tickets from the server. The main reason for this is not to deal with the
Kerberos passwords, which are highly sensitive information. It is quite difficult to figure out
whether a program is running on X terminal where password exposure is unwanted.

A particular way how the credential is initially obtained depends on the system environment and
the adopted Kerberos configuration. The Module was tested on the data formats provided by
several client utilities:

Table 1. Supported Kerberos Clients.

Operating system Client Typical Credential Location

Tickets caches:

Windows 2000/XP  kinit, Leash32 » %KRB5CCNAME%

(older versions) * {java.io.tmpdir}/krb5cc
e {user.home}/krb5cc_{user.name}

kinit, Leash32 operating system memory
(newer versions)

WRQ Reflection + {user.home}/My Documents/Reflection/{user.name}.cch

Linux kinit » $KRB5CCNAME

SunOS « /tmp/krb5cc_{uid}

FreeBSD » {user.home} /krb5cc_{user.name}
Mac OS X default client operating system memory

Keytabs:

all kadmin * {user.home}/krb5.keytab

A concrete search order is specified in the login.conf file. The parameters can be adjusted to
comply with the existing environment.

Reading tickets from the memory caches is accomplished through the Java Native Interface
(JNI). The project's jar file contains individual native libraries for each supported operating
system. On Windows, krbcc32.d11 (included in Leash32) is required. On Mac OS X all needed
system libraries come up pre-installed. When used inside an applet, the native libraries must be
properly unloaded from the virtual machine. Otherwise, the applet's class loader architecture
would not allow the authentication on several web sites in a single browser, throwing a “Library
Is Already Loaded” exception. The Module fixes this with an additional isolation level between
class loaders. It assures that the unused native libraries will be properly collected along with the
corresponding classes.

Note: Kerberos Module for Java was designed to work only with the MIT version of

Kerberos Module for Java Reference Guide ¢ v. 3.1.0 5



Kerberos. The Microsoft has its own implementation, included in Windows 2000 and XP,
where the credentials are stored in the memory and accessed through the Local Security
Authority (LSA) API. Kerberos Module does not support Windows LSA! Generic Java
classes are seemed to be able to use LSA, though.

Like in the parent LoginContext, the authentication procedure in KerberosLoginContext 1is
governed by two methods:

login

Reads the principal's credential. In case of a failure, throws a LoginException, otherwise
quits quietly.

logout

Erases an authentication data that can be stored inside the module.

The getSubject and getPrincipal methods can be used to learn who the current principal is.

Technically, the principal authentication procedure is a loop with many ifs: The Module
examines all the locations (plain files and memory adapters) specified in the login configuration
file and tries to open them one after another. When some data is seemed to be available, reading
is attempted. If the data format matches an expectation, the ticket (or secret key) is parsed and
analyzed. For a ticket, this includes checking up the server principal name, flags, and the
expiration date. If all the trials succeed, the search routine is terminated and the found credential
is returned. Otherwise, if no valid credential is found, a LoginException is thrown.

We found it to be particularly important to provide precise diagnostics in case of login failures.
The authentication procedures is often confusing for the users, as they do not understand exact
requirements. The system must distinguish few situations, such as: nothing that looks like a
ticket can be found at all, the ticket format is incorrect, the ticket has expired, invalid ticket, and
so forth. The Module implements this facility by weighting each partial reading error, and
returning only the most significant one if everything has failed. For example, if the user has an
expired ticket in one file and some garbage in the second one, the final reason is going to be
“Your Ticket Has Expired”, not “Bad Cache Format”, notwithstanding the order they were
found.

In a typical situation, the user principal is authenticated with a cached ticket-granting ticket. The
service principal, in its turn, is authenticated through a keytab. If the service principal is required
only to establish a GSS context (see § 5), there is no need to obtain a TGT. Unlike the JRE
implementation, the Module does not request it in this situation. Client-type principals
occasionally can also use keytabs. For example, it makes sense for public consoles, on which the
users do not have individual accounts. Assuming the risk it may cause, such capabilities are
present anyhow in real life and must be covered by the same authentication technique.

It is important to realize that the KerberosLoginContext's login operation does not actually
authenticate the user. The acquired piece of information only looks like a credential. In fact, the
credential storage could easily be tampered with, the ticket could be revoked, or there may be
other reasons unknown for the client, which make the ticket or secret key invalid. As stated in

Kerberos Module for Java Reference Guide ¢ v. 3.1.0 6



[3], to validate a credential, one must use it on the server it is intended for. In our case, the
ticket-granting ticket must be presented to an appropriate TGS, and the secret key must be used
either on the authentication server to get a TGT, or to accept a GSS context.

5. Credentials Sharing

After two peers get authenticated, they can present their identities to each other and establish a
secure communication channel. The GSS-API specification [6] determines augment protocols
and notions for the developers. According to this concept, two peers possessing their Kerberos
credentials can exchange some information between each other and establish a common security
context. Inside the context a credential delegation and several per-message security services are
available. These services are: encryption, message identity codes (MICs), sequence detection,
and replay detection. They are applied to the data by wrapping and unwrapping data streams.

In Java, this common security context is implemented in java.ietf.jgss.GSSContext class.
Detailed instructions on its establishing and usage are given in [7]. In practice, however, the
given abstract concept is poorly understandable by many occasional programmers.

The KerberosLoginModule implements a few methods for GSS context establishing that will fit
most of the user applications. These methods are partially integrated with the Kerberos
authentication routines and use common configuration namespace. Many technical details are
hidden from the end users (for example, conversions between Kerberos principals and GSS
names).

The GSS context is always initiated on the client side by one of the following methods:

initSecContext (InputStream, OutputStream, ServiceName, byte)

Requests the security services as specified by the byte argument. Input and output streams
have to be connected with the server in some application-specific way (for example, via a
TCP/IP socket). Depending on a particular set of features, the parties can be mutually
authenticated, or only the client authenticates to the server. It takes 1 (one-way mode) to 3
(mutual mode) transactions via the streams to complete the request. The method returns a
GSSContext instance that can be used further to get remote server name, wrap data
streams, etc.

initSecContext(ServiceName)

A trivial method. Performs only a one-way authentication of the client on the server (this
can be used, for example, in a web browser). Unlike in the mutual type, does not establish
per-message security. The method returns a BASE64-encoded security token ought to be
sent to the server.

On the client side, two similar methods are employed. Both of them return a GSSContext
instance that keeps the client's identity and can be used to apply per-message security in the
mutual mode:

acceptSecContext (InputStream, OutputStream)

The input and output streams have be connected to the output and input streams on the

Kerberos Module for Java Reference Guide ¢ v. 3.1.0 7



client side, correspondingly.
acceptSecContext(String)
A trivial method. Accepts a BASE64-encoded token from its client counterpart.

In order to initiate and accept a security context, two peers must know the name of a GSS service
this context is associated with. RFC 1964, § 2.1.2 defines the host-based service name format as:

service@hostname

The GSS service name is derived from the corresponding name of a Kerberos's service principal
acting on the server side, as shown below. To avoid confusion in distinguishing of two name
formats, a new ServiceName was introduced.

host/foo.fnal.gov@FNAL.GOV (Kerberos) » host@foo.fnal.gov (GSS)

Special characters, such as “/” and “@”, in the GSS name's service part must be escaped with a
backslash. Inside ServiceName, this is done automatically:

daeset/bd/foo.fnal.gov@FNAL.GOV - daeset\/bd@foo.fnal.gov

6. Configuration

As the Kerberos protocol in Java must work in the existing global environment, some initial
configuration is always required. The Module does not rely on any configuration files or
environment variables that can be found on an individual computer (except those environment
variables used to find cached credentials). To be self-sufficient, though, the module's jar file must
already include all the configuration data. Some tuning can be done through Java properties. All
used properties must be set at the program startup, before the KerberosLoginContext class is
statically initialized.

6.1. Files

The kerberos-client. jar contains two configuration files:

/META-INF/krb5.conf

The main Kerberos configuration. Although a similar file usually exists on all the
computers, various versions of Kerberos clients can use different places to store it. So,
there is a chance to find an obsolete data in /etc/krb5.conf instead of the working
configuration. By default, the Module copies this file from the jar to a temporary local
directory and then uses that copy. In order to override this behavior and read a local
configuration file instead, the name of such a file should be specified in
java.security.krb5. conf property.

As an alternative to the configuration files, the two Java properties can be set:
java.security.krb5.realm and java.security.krb5.kdc

Note: The public distribution contains some sample data in /META-INF/krb5.conf. If
java.security.krb5.conf (or ...realm and ...kdc) are not specified, you must update

Kerberos Module for Java Reference Guide ¢ v. 3.1.0 8



that file with your proprietary configuration and rebuild the jar with the provided Ant
script.

/META-INF/login.conf

Defines the credential search order for various operating systems. Update this file if in your
existing configuration the cached tickets and keytabs are stored elsewhere.

6.2. Java Properties

gov.fnal.controls.kerberos.keytab

The keytab file name. Should be specified if the principal's credential is stored in a keytab
file different from {user.home}/krb5.keytab.

gov.fnal.controls.kerberos.principal

Default principal name. Required only if the authentication is conducted through a keytab
file. If not specified, the expected keytab principal is reconstructed from the current user
name and the default realm (this assumption will not work for service principals).

If there is a credential cache, this property is not required. But if it is set, the value is used
as an additional filter for the tickets.

java.security.krb5.conf

Name of the Kerberos configuration file. Set this property only if the default krb5.conf
does not exist in kerberos-client. jar, or should not be used.

If the ...conf property is not set, the KerberosLoginContext tries to use a local copy of
/META-INF/krb5.conf (preferred way). However, if both ...realm and ...kdc properties
are set, they take precedence.

java.security.krb5.realm
java.security.krb5.kdc

Kerberos default realm and the key distribution center address. Can be used if no
krb5. conf is available. These properties must always come together.

gov.fnal.controls.kerberos.default_realm

An internal property which keeps the default realm name. It it set automatically and should
not be changed from applications.

java.security.auth.login.config

Login configuration file URL. It is set automatically during the Module start up and points
to the login. conf inside the project's jar file. Typically, should not be changed.

6.3. Configuration Checklist
As a matter of fact, the Kerberos Module configuration requires to answer three questions:

1. Which Kerberos configuration file to use?

Kerberos Module for Java Reference Guide ¢ v. 3.1.0



(a) /META-INF/krb5.conf inside kerberos-client. jar.

v Replace the sample krb5.conf with your proprietary configuration and rebuild the
archive.

(b) Some local configuration file, e.g. /etc/krb5. conf.
v Set the file name in java.security.krb5. conf.
(¢) No configuration files at all.
v Set both java.security.krb5.realm and java.security.krb5.kdc properties.
2. What kind of credentials is used?
(a) A ticket-granting ticket (most of the user principals).
v Do nothing.
(b) A secret key (service principals and special user principals).

v If the principal name is not {user.name}@{...default_realm}, put the right value in
the gov.fnal.controls.kerberos.principal property.

v If the keytab name is not {user.home}/krb5.keytab, put the right value in the
gov.fnal.controls.kerberos.keytab property.

3. Can the Module automatically find credentials?
(a) Yes.
v Do nothing.
(b) No.
v Upgrade the default /META-INF/login.conf and rebuild the archive.

7. Testing

To test out the Module in a particular configuration, the KerberosLoginContext class can be
launched from the command line as a standalone program. The common call syntax is:

java -cp kerberos-client.jar |
gov.fnal.controls.kerberos.KerberosLoginContext options

Instead of java, you may have to use some more precise syntax for pointing out the required
virtual machine, such as $JAVA_HOME/bin/java. Also make sure that the
kerberos-client. jar is available and contains all needed configuration files. To set a system
property, use -Dname=value construct.

The program can be used in three modes. For a brief help, use -h option.

7.1. Authentication Mode

Requires no options. The current principal is authenticated by reading its credential from a ticket

Kerberos Module for Java Reference Guide ¢ v. 3.1.0 10



cache or a keytab file:

bash-2.85% java -cp kerberos-client.jar gov.fnal.controls. kerberos.KerberosLoginContext
Utility for testing Kerberos authentication through GS5 over TCP/IP.
20085 (c) Universities Research Association, Inc.
Author: Andrey Petrow, apetrow@fnal.gov.
Version: 1.7
Settings:
java.security.auth. login.config=jar:file:/export/users/apetrov/kerberos-client.jar!/MET
A-INF/login.conf
java.security. krb5.conf=/var/tmp/krb5.conf
java.security. krb5.realm=null
java.security. krb5. kdc=null
gov.fnal.controls. kerberos.principal=null
gov.fnal.controls. kerberos. keytab= void_
gov.fnal.controls. kerberos.default realm=FNAL.GOV
Starting authentication.
Oct 4, 20605 10:11:31 AM gnu.fnal.cuntruls.kerberos.login.[acheLnginModule login
INFO: Reading cache FILE:/tmp/krb5cc_p3644
Oct 4, 2665 10:11:31 AM gov.fnal.controls.kerberos.KerberosLoginContext login
INFO: Authenticated as apetrov@FNAL.GOV until Wed Oct @5 18:58:31 CDT 2085 (1125ms)
Finished

As can be seen on the screen shot, the program prints out values of all relevant system properties,
either set by the user, or defined automatically.

The following example shows the service principal authentication (mind additional properties):

bash-2.05% jawva -cp kerberos-client.jar -Dgov.fnal.controls. kerberos. keytab="= = =
s /daeset keytab -Dgov.fnal.controls.kerberos.principal=daeset/bd/dped®. fnal. gnv@FNA
OV gov.fnal.controls. kerberos.KerberosLoginContext
Utility for testing Kerberos authentication through GSS ower TCP/IP.
2005 (c) Universities Research Association, Inc.
Author: Andrey Petrov, apetrov@fnal.gov.
Version: 1.7
Settings:
java.security.auth.login.config=jar:file:/export/users/apetrov/kerberos-client.jar!/MET
A-INF/login.conf
java.security. krb5.conf=/var/tmp/krb5. conf
java.security. krb5. realm=null
java.security. krb5. kdc=null
gov.fnal.controls. kerberos.principals= daeset!bdfdpeﬂ& fnal.gowv@FNAL . GOV
gov.fnal.controls. kerberos. keytab= = sy fdaeset keytab
gov.fnal.controls. kerberos.default_ realm=FNAL . GOV
Starting authentication.
Oct 4, 2805 106:38:30 AM guu.fnal.contruls.kerberns.lngin.CacheLnginModule login
INFD: Reading cache FILE:/tmp/krb5cc_p3644
Oct 4, 2805 108:38:38 AM gov.fnal.controls. kerberos. login.CacheLoginModule login
INFO: Skipping cache FILE:/tmp/krbScc 3842
Oct 4, 2805 10:32:30 AM gov.fnal.controls.kerberos.login.CacheloginMedule login
INFO: Skipping cache FILE:/homefapetrov/krb5cc_apetrov
Oct 4, 2865 16:38:38 AM gov.fnal.controls. kerberos. login.KeytabReader login
INFO: Reading keytab FILE: = = = =i daeset keytab
Oct 4, 2005 106:3B:30 AM gov.fnal.controls. kerberos.KerberosLoginContext login
INFO: Authenticated as daeset/bd/dpeB8.fnal.gov@FNAL.GOV until null (312ms)
Finished

7.2. Server Mode

The program authenticates the local service principal, and than opens a TCP/IP port to listen for
incoming client requests. The syntax is:

KerbrosLoginContext server [port]

Kerberos Module for Java Reference Guide ¢ v. 3.1.0 11



where port is an optional of the TCP/IP port which should be opened. The default is 4747.
Starting the utility:

bash-2.085% java -cp kerberos-client.jar -Dgov.fnal.controls.kerberos. keytab="u=
m==/daeset keytab -Dgov.fnal.controls.kerberos.principal=daeset/bd/dped8. fnal. goviarFNAL . G
OV gov.fnal.controls. kerberos.KerberosLoginContext server
Utility for testing Kerberos authentication through G55 ower TCR/IP.
2085 (c) Universities Research Association, Inc.
Author: Andrey Petrov, apetrov@fnal.gov.
Version: 1.7
Settings:
java.security.auth.login.config=jar:file:/export/users/apetrov/kerberos-client.jar! /MET
A-INF/login.conf
java.security. krb5. conf=/var/tmp/krb5. conf
java.security. krb5. realm=null
java.security. krb5, kdc=npull
gov.fnal.controls. kerberos.principal= daeset!bdxdpeﬁa fnal.gowvidFNAL . GOV
gov.fnal.controls. kerberos. keytab="= S /daeset keytab
gov.fnal.controls. kerberos.default_ realm=FNAL . GOV
Starting authentication.
Oct 4, 2605 11:15:87 AM gou.fnal.cnntrnls.kerberos.lngin.tacheLoginMndule login
INFO: Reading cache FILE:/tmp/krbScc p3644
Oct 4, 2605 11:15:087 AM gov.fnal.controls. kerberos,login.CacheloginModule login
INFO: Skipping cache FILE:/tmp/krb5cc 3842
Oct 4, 2605 11:15:07 AM gov.fnal.controls. kerberos.login.CacheloginModule login
INFO: Skipping cache FILE:/home/apetrov/krb5Scc_apetrov
Oct 4, 2805 11:15:87 AM gov.fnal.controls. kerberos. login.KeytabReader login
INFO: Reading keytab FILE: == = ms==/daeset keytab
Oct 4, 2605 11:15:087 AM gov.fnal.controls. kerberos.KerberosLoginContext login
INFO: Authenticated as daeset/bd/dpe@2.fnal.gov@FNAL.GOV until null (398ms)
Openning port 4747
Waiting for connection. Use Ctrl+C to interrupt.

Upon arriving of a request:

Connection reguested from /131.225.0 =
Security context established (4232ms)
established=true
protReady=true
srchame=apet rovaFNAL . GOV
targlame=daeset’ /bd@dped®. fnal.gov
mutualAuthState=true
integState=true
confState=false
replayDetState=true
sequencebetState=true
lifetime=2147483647
Waiting for connection. Use Ctrl+4C to interrupt.

7.3. Client Mode

In this mode, the local user principal is authenticated and then its credential is forwarded to the
server through a TCP/IP connection. There must be another utility already running in the server
mode.

KerbrosLoginContext client service host[:port] [gss-opt]*,

where

service

A “short” service identifier, used along with the destination address to create the full

Kerberos Module for Java Reference Guide ¢ v. 3.1.0 12



host-based service name.

host

Destination server address.

port

Optional port on the destination server. The default is 4747.
gss-opt

GSS-API options (by default all of them are reset):

+i request integrity check (message integrity codes),
+C request confidentiality (encryption),

+T request replay detection,

+S request sequence detection.

bash-2.85% java -cp kerberos-client.jar gov.fnal.controls. kerberos.KerberosLoginContext cli
ent daeset/bd dpe@8.fnal.gov +1 +r
Utility for testing Kerberos authentication through GSS over TCP/IP.
2085 (c) Universities Research Association, Inc.
Author: Andrey Petrov, apetrow@fnal.gov.
VYersion: 1.9
Settings:
java.security.auth.login.config=jar:file:/export/users/apetrov/kerberos-client.jar!/MET
A-INF/login.conf
java.security. krbS.conf=/var/tmp/krb5.conf
java.security. krb5. realm=null
java.security. krb5, kdc=npull
gov.fnal.controls. kerberos. principal=null
gov.fnal.controls. kerberos. keytab= void_
gov.fnal.controls. kerberos.default realm=FNAL.GOV
Starting authentication...
Oct 4, 2605 11:26:34 AM gov.fnal.controls. kerberos.login.CacheloginModule Tlogin
INFO: Reading cache FILE:/tmp/krbScc_p3148
Oct 4, 2605 11:26:34 AM gov.fnal.controls.kerberos.KerberosLoginContext login
INFO: Authenticated as apetrowv@FMAL.GOV until Wed Oct @5 18:58:31 CDT 2085 (231ms)
Connecting to dpeB8.fnal.gov:4747...
Starting GSS transaction with daeset\/bd@dped®.fnal.gov...
Security context established (4234ms)
established=true
protReady=true
srchame=apetrovaFNAL . GOV
targlame=daeseth\/bd@dpedd. fnal.gov
mutualAuthState=true
integState=true
confState=false
replayDetState=true
sequenceletState=true
lifetime=2147483647
Finished

8. Web Authentication

With a growing number of web services, employing the Kerberos authentication for HTTP looks
very attractive. However, at this time there is no general solution on how it should be done. The
Module uses an approach that can fit many application. Here is a scenario:

Kerberos Module for Java Reference Guide ¢ v. 3.1.0 13



1. The user obtains a local ticket-granting ticket, either with a Kerberos client, or by
forwarding it from another host.

2. On the web page, an applet reads this ticket and requests establishing of a new security
context The binary token created by GSS-API is sent to the web server in lieu of a
password.

3. The server accept the token, creates a context and gets the user's name from it. Possession
of the valid GSS context means a successful authentication. If the token is incorrect,
forged, expired, etc., the context can not be established, and the user is rejected.

The implementation consists of a client-side applet, few web pages, and a server-side module.
The client has been tested on all operating systems listed in Table 1 with various versions of
Internet Explorer, Mozilla, Mozilla Firefox, and Safari web browsers. The browsers must have
the Java Plugin ver. 1.4.2 or 1.5 already installed. The server side modules were developed for
Tomcat server ver. 4.1, 5.0".

The procedure is using a FORM (not BASIC) type of authentication, in which the user name and
password are entered in a special login page. The Module has the applet on this page that fills out
the password field with a GSS token (the name field remains blank).

Here is how the FORM authentication works in Tomcat:

L. Initial user's request

= Protected resource

302
200 Lugin form Authentication
succeeded
2, User submits password
B j_security_check 302 Error page

Authentication
failed

Fig 1. FORM Authentication in Tomcat

When an unauthenticated user tries to request a protected resource, the server silently (with the
status code 200) redirects to the login page, containing a web form for the user name and
password. This form submits data to a j_security_check path, pre-assigned to an authentication
procedure. If the authentication succeeds, the user is redirected to the originally requested page
(with the status code 302). If it fails, an error page is shown. Note, that if the original request had
POST type, it is converted to GET upon the final redirection.

8.1. Client's Applet

The KerberosLoginApplet class implements a simple applet on top of KerberosLoginModule.

1 The current version won't compile and run with Tomcat 5.5, as the Catalina API has slightly changed. The
differences are actually very small.

Kerberos Module for Java Reference Guide ¢ v. 3.1.0 14



The login procedure begins immediately after the applet's start method is invoked. Its current
status is shown in the GUI (the bottom line is a destination service name).

Firstly, the applet tries to read the local credential. This is

done on the same way as described in § 4. If the valid ticket

or the secret key is found, the applet initiates a new GSS Kerberos Authentication
context with the web server. The destination host name and In.Frogress..

the “short” service name must be specified in a host and

service applet parameters, correspondingly. @ 00
daeset!/ bd@dpe0s.fnal.gov

0:05

As this procedure 1is wused solely for the client

authentication, there is no need to request any security

services in initSecContext. The common security context can be established in one
transaction, by sending a single bunch of data (a token) to the server. The applet encodes the
token with the BASE64 algorithm and calls the contextReady JavaScript function on the parent
web page, using the encoded value as a parameter. Than, the script sends the token back to the
server.

8.2. Web Resources

The login subdirectory should be added to each web application wanted to use the
authentication. Here is the directory contents:
index. jsp

A sample page used to test and debug the login procedure.

krb5login. jsp

The main login page that starts the applet and submits data to j_security_check. It also
defines the current host name on the server side, and puts this value as a host parameter
for the applet. A combination of object and embed tags is used as recommended in [8].

In the public distribution, the applet's archive kerberos-client. jar is loaded from the
current directory. That can be changed to reflect an actual configuration.
error.html

Shows up if the authentication failed.

warning.html

Some custom login warnings and instructions. Referenced from krb5login. jsp.

login. js
ok.html
login. js is a simple JavaScript to start the authentication. In fact, it just opens ok.html in

a separate window. The ok.html should be registered inside the protected area (in
web.xml). Once reached, it closes the current browser window and reloads the parent one.

Kerberos Module for Java Reference Guide ¢ v. 3.1.0 15



8.3. Server-Side Modules

On the Tomcat web server, the Kerberos authentication mechanism is provided by the
Krb5Realm class (implementing the Catalina's org.apache.catalina.Realm interface). The
class accepts a BASE64-encoded GSS token in lieu of a password, creates a GSS context, and, is
succeeded, sets up the current user's principal. The security realm should be registered in the
server.xml configuration file inside the Host container, as follows:

<Realm className="gov.fnal.controls.kerberos.catalina.Krb5Realm"
servicePrincipal="service_principal_name"
keyTab="keytab_name”
userLookup="user_lookup"
userlLog="user_logger" />,

where:
service_principal_name

A name of  the acting service principal. Will be set to
gov.fnal.controls.kerberos.principal environment variable. The “{0}” construct
will be automatically substituted with the current host name. For example,

daeset/bd/{0}@FNAL.GOV

on the host dpe08. fnal.gov will be converted to

daeset/bd/dpe08.fnal.gov@FNAL.GOV .

keytab_name
Full path to the keytab file
user_lookup (optional parameter)

The name of a class implementing the interface with a user database. By default, it is

gov.fnal.controls.kerberos.login.UserLookup. Custom implementations must
extend this class.

user_logger (optional parameter)

The name of a class implementing the interface with a custom security logging database.

By default, it is gov.fnal.controls.kerberos.login.UserLog. Custom
implementations must extend this class.

There may be a need to register few hosts that have to be authenticated according their addresses
withoutKerberos. This is implemented by the special Tomcat valve:

<Valve className="gov.fnal.controls.kerberos.catalina.HostAuthenticator"
address="address_mask"
userLookup="user_lookup"

userlLog="user_logger" />,
where:

address_mask (optional parameter)

Kerberos Module for Java Reference Guide ¢ v. 3.1.0 16



A regular expression used for rough address filtering to reduces the number of database
calls. For example, the construct

A192\.168\.((2)|(22))\.\d{1,3}$
will allow only addresses 192.168.2.* and 192.168.22.* to go through.
user_Ilookup

The name of a class implementing the interface with a user database. The database
provides a correspondence between host addresses and the user names. The default
gov.fnal.controls.kerberos.login.UserLookup class must be extended, as it returns
null for such all requests.

user_logger (optional parameter)
The same meaning as in the Realm.
We would suggest to use the Single Sign-On valve, too:
<Valve className="org.apache.catalina.authenticator.SingleSignOn" />

The specific protected area must be configured in the application's web.xml file, as described in
the Tomcat User Guide.

9. Perspectives

The nearest plan is to implement a Transport Level Security protocol based on the Kerberos
authentication. The mechanism described in RFC 2712 (and implemented in Java 1.5) looks
controversial because it is always using the host/MachineName@Realm service name, generally
assigned to other services, such as telnet and fip.

References

[11 A. D. Petrov. Using Kerberos Authentication In Java. Draft Version. Beams-doc-1502.
http://beamdocs.fnal.gov/cgi-bin/public/DocDB/ShowDocument ?docid=1502

[2] A, Bosworth. ICSOCO04 Talk. http://www.adambosworth.net/archives/00003 1.html

[3] C. Neuman et al. The Kerberos Network Authentication Service V5. Request for Comments (RFC) 4120,
Internet Engineering Task Force, July 2005.

[4] B. Tung. The Moron's Guide to Kerberos. http://www.isi.edu/gost/brian/security/kerberos.html

[5] J. Linn. Generic Security Service Application Program Interface. Request for Comments (RFC) 1508,
Internet Engineering Task Force, September 1993.

[6] L. Zhu et al. The Kerberos Version 5. Generic Security Service Application Program Interface
(GSS-API) Mechanism: Version 2. Request for Comments (RFC) 4121, Internet Engineering Task Force,
July 2005.

[7] M. Upadhyay and R. Marti. Single Sign-On Using Kerberos In Java. Sun Microsystems.
http:/fjava.sun.com/j2se/1.4.2/docs/guide/security/jgss/single-signon.html

[8] Using OBJECT, EMBED and APPLET Tags in Java Plug-in
http:/fjava.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/using_tags.html

Kerberos Module for Java Reference Guide ¢ v. 3.1.0 17



