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1 Collimation in the Main I njector

A very high beam power~0.13 MW) of the beam injected from the 8 GeV Linac into the Main
Injector and tight aperture defined by the extraction anecinpn Lambertson magnets (Table 1)
as well as a complicated set of orbit bumps (Table 2 and 3ngdute cycle implies serious
constrains on beam losses in the machine. All eight stradghtions of the Main Injector are
occupied by the RF cavities, injection and extraction syiste The horizontal orbit bumps (Fig.
1 and 2) used for a closed orbit displacement at the Lambyerteagnet septa do not permit to
install horizontal collimators close to the beam in theigtrasections occupied by the extraction
and injection systems. The only straight sections whichlmmsed for a beam collimation are
MI22 for vertical and MI-30 for horizontal collimation of ¢hbeam (Figs. 3 and 4). Currently a
kicker-magnet is located at the center of MI-30 which is useth for a beam extraction from the
MI to the Recycler and for injection from the Recycler to thé Mdditionally to this a horizontal
closed orbit bump (Fig. 5) is used for a kicked beam displargmeduction in the region from
MI-22 to MI-32. To resolve this conflict the primary and sedary collimators will be retracted
from the accelerator aperture at those cycles which arefoséide antiproton beam recycling.

Another complication is that dispersion is equal to zerollasteaight sections of accelerator.
This requires to place off-momentum primary collimator lre tarc preceding the MI30 straight
section. The vertical primary collimator is necessary aplin the arc preceding the MI22 straight
section to get required phase advance between primary anddagy collimators.

1.1 Collimation System Parameters

A possible location of a two-stage collimation system isvafan Figs. 3, 4 and 6. The system
consists of one primary and two secondary collimators batihérizontal and vertical planes. Sec-
ondary collimators are located in an optimal phase advaaamstream of the primary collimators.
This provides the halo particles collimation at the secondallimators during the first turn after
interaction with the primary one. Assuming that 5% of therbéscollimated at injection and 8%

at the top energy this amount 16 kW of power intercepted bgécendary collimators. Simulations
show that this power is intercepted mostly by the two secgnelallimators with about 5-10 kW per
each of them. This requires local steel shielding-@t5 m long which extends to1 m transversely
around the secondary collimators and the first quadrupolestiveam of the collimator.
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The horizontal secondary collimators are located at thetak-cell of the MI30. This leaves
the rest 3.5 cells for the electron cooling and new RF system.

The mechanical design of the secondary collimators anétsugill be similar to those already
built and installed in the Tevatron for Collider Run Il. Tlosollimators consist of 2 pieces of
stainless steel, 0.5 m long, welded together in an L-shap@gemation (Fig. 7). The collimator
assembly is welded inside a stainless steel box with bellmwsach end. Full range of motion
is 50 mm in steps as small as @ if required and a maximum speed of 2.5 mm/sec. Position
readback is provided by linear differential voltage transfers. The primary collimator assembly
is identical to the collimator assembly except that thegbkgshape blocks are only 0.1 m in length.
The 1 mm thick machined tungsten primary collimator jawslaoied to the stainless steel blocks.
The blocks provide a good heat sink for energy dissipatethéntingsten. The entire assembly,
including bellows, will occupy approximately 0.6 m of |lati space.

A total of 16 kW of DC power can be removed from a single colliondy circulating standard
LCW (Low Conductivity Water) through cooling channels oe thutside of the collimator box. A
flow of 3 gpm will remove this power with a temperature rise 61Q.

2 Simulations of Beam Loss at Collimation System Oper ation

At normal operating conditions, a circulating beam sizengrelowly with a small step size per turn.
A corresponding proton impact parameter on a collimatorld/be of the order of fewum. A thin
primary collimator increases proton amplitude as a reduttutiple Coulomb scattering and thus
results in drastic increase of impact parameter frorhO umat the primary collimator tev 1 mm
at the secondary collimators. This results in a significaoluction of the out-scattered proton
yield and total beam loss in the accelerator, decreasesnetdir jaw overheating and mitigates
requirements on the collimator alignment [2].

A multi-turn particle tracking through the acceleratortwiitalo interactions with the collimators
is conducted with theTRucTcode [3]. All the accelerator components with their reasgths and
aperture restrictions are taken into account. [FHanctions, dispersions and phase advances at the
collimators are presented in Table 5. The 1-mm thick tumggtanary collimators are positioned at
the edge of the beam after painting injectiontf40m- mrad) both in vertical and horizontal planes.
The secondary collimator jaws are located with 2 mm offsetnfithe primary ones. The proton
beam position at injection and at 120 GeV with respect to tiv@ary and secondary collimators
are shown in Fig. 8. At the top energy the circulating beanit @lmoved closer to the collimators
edge by the vertical correctors V217, V219, V221, V223 an@¥at MI22, and by the horizontal
correctors H228, H230, H302 and H304 at MI30 straight sactibig. 8 represents position of
162t mm- mrad beam at the top energy. The size of f@2m- mrad beam at 120 GeV is equal
to the size of 1& mm- mrad beam at injection. The numerical simulations are done ferMiain
Injector [1] in the presence of orbit displacement during tlycle, Lambertson magnets aperture
limitations and aperture restrictions presented at Tablegl. The proton beam position at injection
and at 120 GeV with respect to the Lambertson magnet sept&haven in Fig. 9. As shown here,
the circulating beam is pretty close to the septum of Lansbartnagnet at MI60 and at M140.

Horizontal and vertical phase space at injection in the arjnand secondary collimators are
presented in Fig. 10 with 1 mm thick tungsten primary colliona Large amplitude protons are
intercepted by the secondary collimators during the firet @fter interaction with the primary
collimator. Protons with amplitudes smaller than secopdallimators position survive during
several tens of turns until they increase amplitude in the inéeractions with primary collimators.
These particles produce a secondary halo and occupy tmenfd® mrad+ 2 mm) envelope. The



phase spaces at the collimators with 0.5 mm and 0.2 mm thiasten primary collimators are
shown in Fig. 11 and 12.

Beam loss distributions at injection around the accelerata in the collimation region are
shown in Figures 13, 14 and 15 for different thickness of ariyrcollimator. Accelerator intensity
is assumed to be equal to51x 10*ppp repetition rate is 0.67 Hz, and 5% of total intensity is
assumed to be lost at injection at these simulations. Thee$okehind primary collimators are an
order of magnitude less with thin (0.2 mm) primary collintatompared to the thick (1 mm) one.

Beam loss distributions at 120 GeV around the acceleratdrirathe collimation region are
shown in Figures 16, 17 and 18 for different strength of omdliion bumps. %% of total intensity
is assumed to be lost at 120 GeV at these simulations. Beamsl@t the Lambertson magnets of
MI60 and M40 are very big for the large emittance beam ¢&6&» mrad) compared to the small
one ( 54mm- mrad). This means that the circulating bean should be kept clo#ieet collimators
during the entire cycle.

3 Conclusions

A two-stage beam halo collimation system located at MI22 &hH80 has been proposed. The
system consists of 0.5-mm thick tungsten primary collimafmositioned at the edge of the beam
after painting injection (4@ mm- mrad) both in vertical and horizontal planes. The secondary
collimator jaws are located with 2 mm offset from the primanges. Horizontal and vertical bamps
are used to keep the edge of the circulating beam close totlmator jaws during the accelerator
cycle.

At collimation of 5% of total intensity at injection and3o at the top energy beam losses in the
collimation region at injection are 20 W/m and at 120 GeV - 10nMIn the rest part of accelerator
they are 1-10 W/m at injection and 1 W/m at the top energy wétlesal peaks exceeding this level
by a factor of 10 (MI60) and 100 (MI40, MI52).
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septa position

name location | horizontal | vertical | rotation
mm mm radian

LAMGOA entr | MI-60 2.0 -1.5 0.145
LAMGOA exit | MI-60 2.0 -1.5 0.145
LAMG60OB entr | MI-60 2.0 -1.5 0.020
LAMGOB exit | MI-60 2.0 -1.5 0.020
LAM60C entr | MI-60 2.0 0.0 0.000
LAMG0C exit | MI-60 2.0 0.0 0.000
LAM62C entr | MI-62 5.0 0.0 0.037
LAMG2C exit | MI-62 5.0 0.0 0.037
LAM62B entr | MI-62 4.0 -3.0 0.098
LAMG62B exit | MI-62 4.0 -3.0 0.098
LAMG2A entr | MI-62 2.0 -4.0 0.220
LAMG2A exit | MI-62 2.0 -4.0 0.220

LAM10 entr MI-10 0.0 7.5 0.043633
LAM10 exit MI-10 0.0 7.5 0.043633

LAM222 entr | MI-22 -5.0 0.0 0.000
LAM222 exit | MI-22 -5.0 0.0 0.000
LAM321 entr | MI-32 12.0 0.0 0.000
LAM321 exit | MI-32 12.0 0.0 0.000
LAM40A entr | MI-40 -2.0 -3.0 0.220
LAM40A exit | MI-40 -2.0 -3.0 0.220
LAM40B entr | MI-40 -1.0 0.0 0.108
LAM40B exit | MI-40 -1.0 0.0 0.108
LAM40C entr | MI-40 2.5 -2.0 0.070
LAM40C exit | MI-40 2.5 -2.0 0.070
LAM52A entr | MI-52 2.0 -3.0 0.220
LAMB2A exit | MI-52 2.0 -3.0 0.220
LAM52B entr | MI-52 7.0 -1.0 0.098
LAM52B exit | MI-52 7.0 -1.0 0.098
LAM52C entr | MI-52 7.5 -1.0 0.037
LAM52C exit | MI-52 7.5 -1.0 0.037

Table 1: Lambertson magnets position and aperture. Emrand exit are related to the proton
direction.



name | location | horizontal | vertical

mm mm
IQB210 | Q602 1.13 0.0
IQBO75 | Q606 -1.403 0.0
IQD026 | Q610 -1.22 0.0
QD041 | Q612 0.042 0.0
IQB046 | Q614 1.10 0.0

IQD029 | Q618 -3.232 0.0
IQE134 | Q620 0.306 0.0
1IQC024 | Q622 -3.257 0.0

IQD006 | Q641 0.0 0.0
IQG333| Q101 0.0 0.0
IQB176 | Q103 0.0 0.0
IQD010 | Q218 0.0 0.0
IQC023| Q220 0.0 0.0
IQB045 | Q222 0.0 0.0
IQC009| Q319 0.0 0.0
IQBO71| Q321 0.0 0.0
IQD037 | Q323 0.0 0.0

IQD015 | Q340 -0.688 0.0
IQC035| Q400 -3.078 0.0
IQE065 | Q402 -0.919 0.0
IQC036 | Q404 -3.041 0.0
IQD043 | Q406 0.0 0.0

IQD016 | Q518 -0.531 0.0
IQC022| Q520 -2.377 0.0
IQEO72 | Q522 -0.710 0.0
QD024 | Q524 -2.398 0.0
IQD018 | Q526 -0.329 0.0

Table 2: Main quadrupoles displacement.



name | location | length B B system
injection | 120 GeV

m kG kG
H602 | Q602 | 0.3048| -0.094980 0.0
H606 | Q606 | 0.3048| 0.122380 0.0 extraction
H610 | Q610 | 0.3048| 0.140912 0.0 to NuMl
H612 | Q612 | 0.3048| -0.003609 0.0
H614 | Q614 | 0.3048| -0.097277 0.0
H618 | Q618 | 0.3048| 0.243483 0.0 antiproton
H620 | Q620 | 0.3048| -0.015496 0.0 extraction
H622 | Q622 | 0.3048| 0.206837 0.0
V641 | Q641 | 0.3048| 0.454612| 1.914167 proton
V101 | Q101 | 0.3048| -0.113542| -0.478074| injection
V103 | Q103 | 0.3048| 0.476582| 2.006673
V217 | Q217 | 0.3048 0.0 -2.18
V219 | Q217 | 0.3048 0.0 -1.45 vertical
V221 | Q223 | 0.3048 0.0 0.387 collimation
V223 | Q223 | 0.3048 0.0 -1.32592
V225 | Q225 | 0.3048 0.0 2.74535
H220 | Q220 | 0.3048| -0.376349| -2.580411| antiproton
H222 | Q222 | 0.3048| 0.033086| 0.226854| extraction
H224 | Q224 | 0.3048| -0.428911| -2.940797| to recycler
H224 | Q224 | 0.3048| 0.628655 0.0
H226 | Q226 | 0.3048| 0.186812 0.0 Kick
H304 | Q304 | 0.3048| 1.037037 0.0 compensation
H318 | Q318 | 0.3048| -0.158234 0.0
H320 | Q320 | 0.3048| -0.499033 0.0
H228 | Q228 | 0.3048 0.0 1.581 horizontal
H230 | Q230 | 0.3048 0.0 -1.054 collimation
H302 | Q302 | 0.3048 0.0 -1.088515
H304 | Q304 | 0.3048 0.0 -1.35648
H320 | Q320 | 0.3048| 0.258827 2.65 antiproton
H322 | Q322 | 0.3048| 0.005413| 0.055421 injection
H324 | Q324 | 0.3048| 0.360555| 3.691542| from recycler
H340 | Q340 | 0.3048 0.0 0.0
H400 | Q400 | 0.3048| 0.223720 0.0 beam
H402 | Q402 | 0.3048| 0.014799 0.0 abort
H404 | Q404 | 0.3048| 0.219101 0.0
H406 | Q406 | 0.3048 0.0 0.0
H518 | Q518 | 0.3048 0.0 0.0 proton
H520 | Q520 | 0.3048| 0.231776 0.0 extraction
H522 | Q522 | 0.3048| -0.024367 0.0 and
H524 | Q524 | 0.3048| 0.262963 0.0 antiproton
H526 | Q526 | 0.3048 0.0 0.0 injection

Table 3: Corretor strength at injection and at 120 GeV.



name horizontal | vertical
half-size | half-size
mm mm
elliptical aperture
main dipoles and quadrupoles 61.35 26.54
rectangular aperture
collimators 40. 40.
rectangular aperture
foll 6. 6.
elliptical aperture
Q100 26.54 61.35
round aperture
LALAM222, M321 38.5 38.5
cross type aperture
Q402, Q522, Q608, Q620 63.0 29.0

Table 4: Main Injector aperture in the calculations.

Table 5:B-functions, dispersion and phase advances between ctilisna

element B-functions, m| disper- | Phase advance between
sion, m| primary and secondary
collimators, degree
hor. / ver. horizontal | vertical
vert. prim. PrV. | 11.21/41.38 | 0.21 0
secondary V1 | 51.65/16.07 | 0.17 45
secondary V2 14.17/49.67 | -0.08 162
horiz. prim. PrH.| 37.58/7.91 1.42 0 -
secondary H1 | 14.68/51.62 | 0.08 158 -
secondary H2 | 50.50/14.20 2.54 185 -

Table 6: Horizontal and vertical position of collimators.

element envelope of circulating beam @3, mm | collimator position with|
| respect to beam pipe center, mm
horizontal vertical horizontal | vertical
injection | top energy injection top energy
vert. prim. PrV. 6.888 1.872 13.299 3.599 -8.90 -14.18
secondary V1 14.775 4.019 8.265 2.241 -16.90 -9.97
secondary V2 7.737 2.104 14.517 3.942 19.70 16.39
horiz. prim. PrH.| 12.600 3.428 5.742 1.573 -11.88 7.80
secondary H1 7.878 2.143 14.778 4.019 8.58 16.90
secondary H2 | 14.604 3.974 7.716 2.109 15.42 -9.90
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Figure 12: Horizontal (left) and vertical (right) phase @pat injection at primary collimators (top),
secondary collimator No.1 (middle) and No.2 (bottom) witB hm thick tungsten primary colli-
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Figure 14: Beam loss distribution at injection with 1 mm {tof.5 mm (middle) and 0.2 mm
(bottom) thick tungsten primary collimators in the collitioa region (MI22 and MI30). Injected
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Figure 15: Beam loss at MI30 region at injection with 1 mm Jtdh5 mm (middle) and 0.2 mm
(bottom) thick tungsten primary collimators. Injectedeinsity is 15 x 10*ppp repetition rate is
0.67 Hz.5% of total intensity is assumed lost at injection.
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Figure 16: Beam loss at 120 GeV with 0.5 mm thick tungsten anneollimators. Top - collimation
bump bring 162 beam edge to the primary and secondary collimators, bottbomyp bring 54t
beam to the collimators. Beam size of I6Ream at 120 GeV is equal to ibeam at injection,
beam size of 5# beam at 120 GeV is equal tatbeam at injection. Intensity is.3x 10“ppp
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repetition rate is 0.67 Hz..8% of total intensity is assumed lost at 120 GeV.
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Figure 17: Beam loss in the collimation region (MI22 and MI2® 120 GeV with 0.5 mm thick
tungsten primary collimators. Top - collimation bump brih§2t beam edge to the primary and
secondary collimators, bottom - bump bringrBdeam to the collimators. Beam size of IZeam
at 120 GeV is equal to IPbeam at injection, beam size ofs$heam at 120 GeV is equal tatd
beam at injection. Intensity is3x 10*ppp, repetition rate is 0.67 Hz..8% of total intensity is
assumed lost at 120 GeV.
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Figure 18: Beam loss at MI30 at 120 GeV with 0.5 mm thick tueggtrimary collimators. Top -
collimation bump bring 162 beam edge to the primary and secondary collimators, bottounmyp
bring 54t beam to the collimators. Beam size of 16Beam at 120 GeV is equal to ibeam
at injection, beam size of Sdbeam at 120 GeV is equal tatbeam at injection. Intensity is
1.5 x 10“ppp repetition rate is 0.67 Hz..5% of total intensity is assumed lost at 120 GeV.
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