BLM Upgrade Controller Card Program Design

Randy Thurman-Keup **AD / Instrumentation Deptartment**

October 31, 2006

BEAMS-DOC-2433-V3 CVS Code Version v09

Abstract

This document details the structure and behavior of the program that runs in the eZ80 on the Controller Card. The main functionality of this program is to start and stop data acquisition and to maintain data buffers that are accessible from VME at any time without disrupting the aborting capability. These data buffers consist of three circular buffers containing summed data at short, medium, and long integration times, two linear buffers housing profile and flash frames, and a single entry buffer for the most recent display frame.

1 Introduction

The Controller Card (CC) is an embedded processor (eZ80) board residing in the VME crate of the Beam Loss Monitor (BLM) system [1]. The program's job is to transfer information between the crate processor and the digitizer cards (DC), timing card (TC), and abort card (AC), in a deadtimeless fashion, *i.e.* no interruption in the aborting capability of the system. The program operates with a combination of polling and interrupts.

The Controller Card Program (CCP) responds to 5 types of events.

TCLK

The TC puts relevant TCLK events into its FIFO. The CCP polls the TCLK FIFO status register to determine if there is data in the FIFO. If there is data, it reads it from the FIFO and handles it

MDAT

When the TC receives the relevant MDAT frame, it writes the state information to the MDAT FIFO. The CCP polls the MDAT FIFO status register to determine if there is data in the FIFO. If there is data, it reads if from the FIFO and handles it.

• DATA_LATCH (Interrupt)

This is an interrupt generated by the Timing Card when it is time to latch some flavor of Digitizer Card data (fast, slow, or very slow sums). The CCP must then read the status bytes in the Timing Card to determine which data to latch.

Abort Service

The abort card generates an interrupt when one of three user selectable states occurs.

- o A digitizer card indicates that a channel is not OK
- o A digitizer channel is over one of the thresholds but the multiplicity requirement is not met for an abort
- An abort has occurred

The CCP does not respond to the interrupt. Instead it periodically polls the AC to determine the above information.

Crate Processor

When settings need to be updated, the CP writes the settings to the CC and sets an appropriate register in the CC which then responds by loading the settings into the appropriate cards at the appropriate time.

The CCP might need to do intelligent checking of the state of cards and possibly issue a Reset.

2 Initialization

At boot time, the CP and CC must handshake to properly bring up the system. This handshaking between CC and CP is documented in Figure 1 below. The initialization procedure includes stopping the CC at the beginning of the procedure. Stopping the CC at boot time is necessary for a number of reasons: first, at crate power up time, the other cards will not have gone through their FPGA programming sequence if the CC immediately starts to access them; second, the waiting gives the CP time to download settings to the CC; and third, if the CC reboots by, e.g. hitting an invalid instruction, it would probably be good to notify the outside world, and save a

snapshot of the CC's debug memory contents for later analysis. The settings that need to be downloaded to the CC are listed in Table 1.

• Timing Card

The timing card must be downloaded with the appropriate TCLK events (see Table 3). In addition to the events listed in Table 3, there are several other TCLK and BSCLK events that the CCP does not respond to but which are responded to by the other cards in the system.

- TCLK \$8F 1 Hz event for updating the TC clock
- o TCLK \$5B TeV Pbar Injection TBT trigger
- o TCLK \$5C TeV Proton Injection TBT trigger
- o BSCLK \$AA Revolution marker used to generate Make Meas clock
- o BSCLK \$DA MI TBT trigger

• Digitizer Card

The digitizer card must be setup for the correct memory map. The correct map is enabled by setting bit 7 of address 0xFF to 1. All other settings are part of the CP download.

Abort Card

The abort card settings are all downloaded as part of the CP download.

After successfully initializing, the CCP continuously polls for events, periodically interrupted by the Data Latch interrupt.

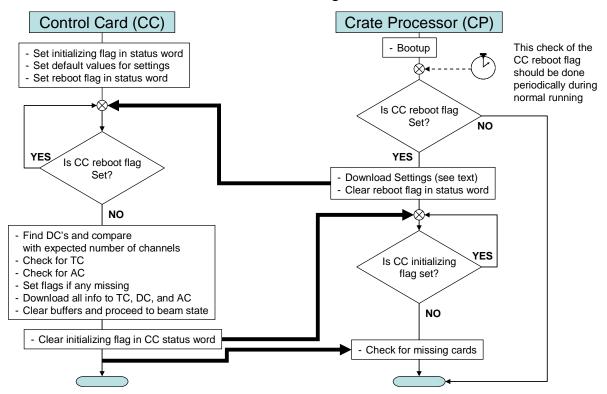


Figure 1: Flowchart of handshaking that occurs at boot time. The alarm clock symbol indicates that the CP should periodically check the reboot bit in the CC and if it finds it set, it should probably notify the outside world somehow. See Section 3 for a description of the flags in the status word.

Table 1: Settings that need to be set on the CC by the CP. The default value is the value that is used by the CCP if not overwritten by the CP and is a compile time setting in the CCP.

Setting	Description	Default Value	Address(Size)
System Time	Unix time in seconds since ???	0	0x09800014(4)
TC Operation	Value to be written to TC control	4 for TeV	0x0980010E(2)
mode	bus CSR. Controls whether TC uses	0 for MI	
	AA marker or internal oscillator.		
Make Measure	Amount to divide down the clock by	1 for TeV	0x09800102(2)
Div	(int. osc.)	2 for MI	
Fast Sum	# of measurements to accumulate in	~64	0x09800104(2)
Length	DC fast sum.		
Slow Sum	# of measurements to accumulate in	~1500	0x09800106(2)
Length	DC slow sum.		
Very Slow	# of measurements to accumulate in	~50000 in TeV	
Sum Length	DC very slow sum. (In MI this is the	~64 in MI	0x09800108(2)
	integral and is the same as Fast Sum		
	Length)		
DC Mode	Digitizer channel mode select word	0x0002 for TeV	0x09800200(2)
Selects	(one word / channel). Controls	0x000A for MI	
	integration mode and whether	(no squelch)	
	squelch is enabled among other		
	things.		

Setting	Description	Default Value	Address(Size)
DC Manual Set	The manual setting value if manual	0x0000	0x09800202(2)
Value	setting mode is chosen		
# of Channels	Expected number of channels	Whatever is present	0x09800100(2)
Abort Info	Thresholds, Masks, and	Everything 0xFF	0x09900000
	Multiplicities for all States		
Machine	Which machine is this (1=TeV,	2	0x0980001C(2)
	2=MI, 3=Booster)		
Initial state	Initial machine state	0	0x0980001E(2)
DC FPGA	Funny name for something which	0x1000	0x0980010A(2)
Control	contains the number of make_meas		
Register	to skip before doing pedestals		
	divided by 16 (N _{skip} / 16)		
IRQ3 Enable	3 bits that determine what generates	0x0007	0x09800112(2)
Bits	an IRQ3 interrupt on the AC		
Squelch Value	This must be in the appropriate units	0x0000 for now	0x09800400(120)
	which is $X(16\sigma_{raw}\sqrt{n_{vs}})$ where X is	since we are not	
	the # of sigma to place the squelch	squelching	
Pedestal	Must be 16 * Very Slow Sum	1024	0x09800116(2)
Length	Length in MI (doesn't matter in		, ,
	TeV)		
Abort Enable	Enables the functioning of the AC	1	0x09800114(2)
Flash, Display,	This determines the source of the	0x0006	0x09800006(2)
Profile source	first half of the frame is (0=fast or	(uses fast for flash,	, ,
	1=slow). Bit 0 is for Flash, bit 1 is	slow for others)	
	for Profile, and bit 2 is for Display.		
End of beam	Delay (in Fast latch periods) after	18	0x09800118(1)
delay	end-of-beam event before asserting		
	AIP		
Flash Delay	Delay from flash frame clock event	0	0x0980011A(1)
	until data is grabbed from buffer		
Profile Delay	Delay from profile frame clock	0	0x0980011C(1)
	event until data is grabbed from		, ,
	buffer		
Display Delay	Delay from display frame clock	0	0x0980011E(1)
	event until data is grabbed from		
	buffer		
Input Switch	Whether or not to open the input	1	0x09800120(2)
state for peds	switch while taking pedestals		

3 Program Components

3.1 CC VME Status Register

The status register consists of 16 bits in VME memory. Table 2 shows the bit definitions of the status word.

Table 2: Bit definitions in the CC Status word.

Bit	Description
15	Reserved
14	Reserved
13	Reserved
12	Mismatched raw data pointers in TC, DC, or AC
11	Pedestals Valid; Don't read pedestals until this is set
10	Very Slow Buffer has wrapped
9	Slow Buffer has wrapped
8	Fast Buffer has wrapped
7	Wrong number of Digitizer Card channels found
6	Abort Card not found
5	Timing Card not found
4	Crate has triggered an Abort
3	Some channels are indicating abort
2	Some channels are not OK
1	CCP is in the process of initializing
0	The CC has rebooted; clearing this kicks off the CC

3.2 VME Accessible Circular Data Buffers

The data from all the digitizers is stored in VME memory in the form of circular buffers. There are index counters which indicate which frame is the current frame, and flags in the status register to indicate when each buffer has wrapped around. Each data frame header contains a flag byte which indicates a number of things. At end of beam, the last frame contains a 1 in the flag byte. This is nominally to allow the CP to ignore this frame at the beginning of the next beam cycle. The first frame of a cycle has a 2 in the flag byte to allow the CP to correct for a bug in the system whereby the DC waits to start summing, but the TC sends out latches immediately. The result is that the slower sums are incomplete when the first latch is received. The CP can divide by the actual sum length if it knows a frame is the first one of the cycle. All other frames contain 0 in the flag byte.

3.3 State Machine

Figure 2 illustrates the CCP state machine.

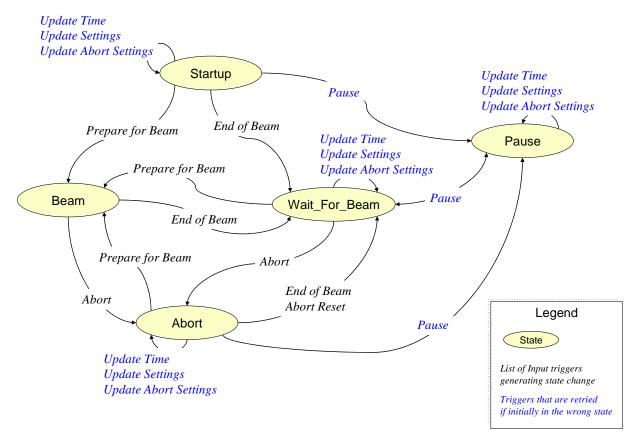
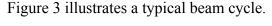



Figure 2: State Machine diagram showing states and state change triggers. The triggers in blue are persistent triggers in that they hang around if they occur during an invalid state.

When a valid state is reached, they are replayed.

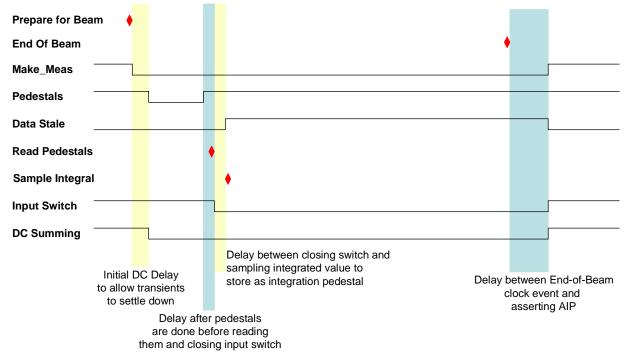


Figure 3: Beam cycle showing the relative timing of various events. The shaded areas are delays between various key events. The integrated value must be sampled after closing the input switch, since there is a glitch upon closing the switch causing the integral to go negative by some amount. The lines are true low.

3.4 Debugging Information

There is a section in VME accessible memory that contains possibly useful information for debugging and error trapping. There are counts of various quantities like the number of TCLKs, the number of each type of data latch, etc... This list is in Appendix A and in the BLM Users' Guide [1]. In addition, there is a CP trigger to dump Control Bus memory to a section of VME memory.

4 External Triggers

4.1 TCLK Event

The code responds to TCLK events in the form of polling the TC. A supported TCLK event causes the TC to put the TCLK number in the FIFO. The CCP polls the FIFO by checking the TCLK FIFO status register and reading the TCLK event. Table 3 documents the supported TCLK events.

Table 3: List of CCP supported TCLK events, state inputs resulting from them, and a description of any action taken.

TCLK	State Input	Action
		Tevatron
\$77	None	Create a flash frame. The current fast sum and very slow sum buffer frames are appended to the flash frame buffer which contains a maximum of 256 flash frames and is cleared at Reset_DC.
\$75	None	Create a profile frame. The current fast sum and very slow sum buffer frames are appended to the profile frame buffer which contains a maximum of 256 profile frames
\$76 \$78	None	Create a display frame. The current fast sum and very slow sum buffer frames are placed in the display frame. Only one display frame is allowed at a time.
\$71	Prepare for Beam	Prepare for beam by issuing a Reset_DC, resetting the circular buffers, and clearing the abort in progress line.
\$4B	End of Beam	End of beam. Tell TC to assert Abort In Progress line.
\$47	Abort	Abort. Tell TC to assert Abort In Progress line.
\$48	Abort Reset	Abort Reset.
\$70	None	Reset linear buffers for flash and profile frames
\$73	None	Until MDAT12 is functioning, this will trigger a machine state change to state 2.
\$74	None	Until MDAT12 is functioning, this will trigger a machine state change to state 1.
		Main Injector
\$7C	None	Create a flash frame.
\$7A	None	Create a profile frame.
\$7B	None	Create a display frame.
\$79 \$20		
\$21		
\$23		Duamona for hoom by issuing a Dagat DC resotting the
\$29	Prepare for Beam	Prepare for beam by issuing a Reset_DC, resetting the
\$2A		circular buffers, and clearing the abort in progress line.
\$2B		
\$2D		
\$2E		
\$26	End of Beam	End of beam.
\$27	Abort	Abort
\$24	Abort Reset	Abort Reset

4.2 MDAT Frame

An MDAT frame forces a change of abort thresholds if the machine state has changed. The TC receives MDAT frames and places the state number in the FIFO. The CCP polls the FIFO status and reads the MDAT frame from the FIFO. It then switches to the proper thresholds page in the DC, copies the abort mask information corresponding to the MDAT machine state from VME memory to the AC, and tells the TC to generate an update abort settings signal. MDAT frame

\$12 contains the Tevatron state, and MDAT frame \$56 contains the Main Injector state. The state number received by the CC is in the range 0-255 with 0-127 being the TeV state, and 128-255 being 128 + the Main Injector state.

4.3 Data Latch Interrupt

Periodically, at each sum period, a corresponding latch is generated by the TC by setting IRQ2 on the control bus. The CC is interrupted and the CCP reads the latch status registers in the TC to determine which sum data to read from the Digitizer Card. It then reads the data and stores it in the circular buffers in VME accessible memory. Finally it clears the corresponding status register which in turn clears IRQ2. Most of the actual memory copies from DC's to circular buffers are handled by assembly language instructions that are modularized in C language #defines. The assembly code makes use of specialized instructions to do multi-byte copies from one memory location to another, and is optimized to do most address manipulations in registers.

4.4 Abort Card Service

The AC is periodically polled by the CCP and if the current status indicates over threshold, or abort, or channel not OK, the CCP status register is modified to reflect the state of the AC.

After an abort, the snapshot of the last frame of the abort card before the abort is copied to VME memory for access by the CP.

4.5 Crate Processor

The CCP must poll various VME registers to respond to new data and/or requests from the front end. When the CP wants to initiate one of these events, it loads the proper settings and then writes a non-zero value to the appropriate register. The italicized entries are triggers that are located in the debug section of VME memory.

• Update Time

The Time value must be copied to the TC and the TC must be told to update its time value.

• Update Settings

The DC and TC global settings (e.g. Fast Sum Length) must be copied to the DC and TC boards. This is only done between beam cycles. So in the Tevatron, if there is a necessity to do this during a store, the CCP must be given a fake end-of-beam event (see below) and then restarted after.

• Update Abort Settings

The DC thresholds, and the AC abort settings must be written to the DC and AC boards. Again, this must be done between beam cycles. Additionally, the TC must be told to assert the update settings line in order for the changes to take effect in the AC. In the DC, changes are immediate. Since they are immediate, the CCP switches the DC to threshold page zero which is not a valid state, and then updates the threshold pages and sets the threshold page back to the proper one.

Read Pedestals

Read the pedestals from the digitizer cards and place them in VME memory.

• Clear Abort Information in Status Word

Tells the CCP to reset the bits in the Status Word that indicate the state of the AC.

• Read / Write Flash Memory

Reading copies the flash memory to the VME memory section reserved for flash downloads/uploads. Writing copies the VME memory section to flash memory. Writing to flash memory involves a protocol and is more elaborate than reading. To initiate a write, the CP must write a 0xA596 to the register.

• Read/Write Control Bus Memory

Read copies 256 bytes of control bus memory to VME memory starting at the specified 16 bit address. The write copies the data byte to the specified 16 bit control bus address. To do this requires writing 0xA596 to the register to avoid accidentally doing this. These are used for debugging purposes and are not part of normal operation.

• Run User Function

This trigger runs a user specified chunk of assembly code that was downloaded to VME memory. It gets copied to normal RAM and the entry point is called. For this to happen, the CP must write 0xA596 to the register (to avoid accidentally running something). This is a debugging feature and not normally used.

• Fake Prepare for Beam

Initiates a prepare for beam state input. Exactly the same as if a prepare_for_beam clock event was received.

• Fake End of Beam

Initiates an end of beam state input. Exactly the same as if an end_of_beam clock event was received.

• Pause the system

When this is received, the system goes into a paused state as soon as it enters a non-beam state. So in the main injector, it would go here after the end of the current cycle (or immediately if currently between cycles). In this state, the control card effectively ignores clock events. This input acts like a toggle button, so successive triggers take the system in and out of the paused state.

• Change Machine State

Change state to the specified state. The specified state is first written to the vme_MachineState register and then this trigger is written with a 0xA596.

5 Output Control Lines

The control bus Reset State Machine signal can be used to quickly reset the system on the fly in the event that a card gets confused. A Reset is wired to port B pin 2 on the eZ80 which is setup as an output pin. This pin must be pulled low to assert the reset. Currently, the on-the-fly reset of the crate is not used. It would probably be initiated from the CP.

6 References

[1] **BEAMS-DOC-1410** Beam Loss Monitor Upgrade Users' Guide. Documents hardware and functionality of the system.

A Data Record

The fundamental unit stored in the various data buffers has the following format:

Byte Offset	Length	Description	
0x00	1	Machine state (0-255)	
0x01	1	Measurement Divisor	
0x02	2	Sum Divisor	
0x04	1	Abort Status (currently unused)	
0x05	1	Channel Count	
0x06	1	Data flag to indicate normal (0), last of cycle (1), new	
		cycle (2), or waiting for stable data (3) frame	
0x07	1	Unused	
0x08	4	Time stamp: Microseconds since last TCLK 1 Hz Event	
0x0C	4	Time stamp: seconds since T0 (i.e. 1 January 1970)	
0x10 + n*4	240	Sliding Sum data for channel <i>n</i>	

The data flag normally cycles through the following progression:

- at start of beam, wait for the digitizer delay, then write a 2 in the first frame collected (for each type of sum)
- write 3 in all the succeeding frames until after the input switch is closed for the specified amount of time
- write 0 in the rest of the frames of the cycle
- at end of beam, write a 1 in the last frame in the circular buffer

In the abort status word, bits 0-3 are the status of the abort from the Immediate, Fast, Slow, and Very Slow measurements, respectively. Bits 4-7 are not used. Loss data are stored as 32-bit long words with data in order from least significant to most significant byte.

Profile, Flash, and Display frames each contain 2 of these data frames. The first one is the user selectable Fast or Slow Sum frame and the second is the Very Slow Sum frame which in the Main Injector contains the integrated value.

B Abort Channel Masks

For each species of abort, there are 8 bytes of channel masks. The channel bits are left shifted in the 8 bytes. So, for instance, if there were 44 (0 to 43) channels in some crate, the channel assignment within the 8 bytes would be as follows (x means unused).

Bytes	7	6	5	4	3	2	1	0
Bits	70	7 0	7 0	7 0	7 0	7 0	7 0	7 0
Channel	4336	3528	2720	1912	114	30 xx	XX	XX

So to enable channel 17, one would write a 1 to byte 4, bit 5; and to enable channel 7, one would write a 1 to byte 3, bit 3. This assignment of course depends on how many channels there are in the crate. Let's assume there are only 20 channels (0-19) in the crate; then one would have the following channel assignment

Bytes	7	6	5	4	3	2	1	0
Bits	70	7 0	7 0	7 0	7 0	7 0	7 0	7 0
Channel	1912	114	30 xx	XX	XX	XX	XX	XX

C VME Dual Port Memory Map

VME dual port memory addresses start at 0x09800000. The eZ80 addressing of the dual port memory begins at 0x800000 (24 bit addressing). The following addresses are specified as offsets from the base addresses.

Address	Size	Description
		System Status
000000	2	Status Word
000006	1	Bit pattern for selecting Flash/Profile/Display source
		Bit $0 = \text{flash}$, bit $1 = \text{profile}$, bit $2 = \text{display}$; $0 = \text{fast}$, $1 = \text{slow}$
800000	1	Read flash memory
00000A	2	Load flash memory (requires 0xA596 to be written here)
00000C	2	Flash memory load status
00000E	1	Clear Abort Info Bits in Status Word
000010	1	Force Pedestal Read
000012	1	Update Time Setting
000014	2	Time Setting LSW
000016	2	Time Setting MSW
000018	1	Update Settings
00001A	1	Update Abort Settings
00001C	1	Machine Type
00001E	1	Machine State
		Flash, Profile and Snapshot Indexes
000020	2	Flash Frame Counter
000022	2	Profile Frame Counter
000024	2	Fast Sum Circular Buffer Frame Index 1
000026	2	Fast Sum Circular Buffer Frame Index 2
000028	2	Slow Sum Circular Buffer Frame Index 1
00002A	2	Slow Sum Circular Buffer Frame Index 2
00002C	2	Very Slow Sum Circular Buffer Frame Index 1
00002E	2	Very Slow Sum Circular Buffer Frame Index 2
000030	1	Fast Sum Frame Index Pointer
000032	1	Slow Sum Frame Index Pointer
000034	1	Very Slow Sum Frame Index Pointer
000036	2	TC Raw data pointer
000038	2	DC Raw data pointer
00003A	2	AC Raw data pointer
	_	Abort Info
000080	8	Channel Not OK List from Abort Card
	1	Settings
000100	1	Channel Count
000102	2	Make_Meas Divisor
000104	2	Fast Sum Length

Address	Size	Description				
000106	2	Slow Sum Length				
000108	2	Very Slow Sum Length				
00010A	2	Digitizer FPGA Control Register (high byte is number of make_meas to				
		skip before performing pedestal measurements / 16)				
00010C	unused	Digitizer Test DAC				
00010E	1	Timing Card Control Bus CSR Register				
000110	unused	Timing Card Control Settings (reserved)				
000112	1	What generates an IRQ3 interrupt from the Abort Card?				
000114	1	Abort Card enabled				
000116	2	Pedestal Sum Length				
000118	1	End of beam delay before asserting AIP (in fast latch units)				
00011A	1	Delay after Flash clock event before collecting flash frame (in fast latch				
		units)				
00011C	1	Delay after Profile clock event before collecting profile frame (in fast				
		latch units)				
00011E	1	Delay after Display clock event before collecting display frame (in fast				
		latch units)				
000120	1	Turn off inputs while doing pedestals				
000122	1	Optional extra delay after pedestals before re-enabling DC inputs				
000124	1	Delay after re-enabling DC inputs before reading data				
000200	2	Channel 0 Mode Select				
000202	2	Channel 0 MADC Manual Setting				
0002EC	2	Channel 59 Mode Select				
0002EE	2	Channel 59 MADC Manual Setting				
OOOZEE		Pedestal Storage				
000300	256	32-bit pedestals stored in standard data record				
000300	230	Squelch Storage				
000400	120	16-bit squelch values				
000100	120	Abort Snapshot Storage				
000500	32	Abort snapshot record from last frame before abort				
000500	2	Abort circular buffer pointer at time of snapshot				
300220		Integration Pedestal Storage				
000600	256	32-bit Integration pedestals				
00000		Debug Information				
010000	48	Program name and build date				
010030	4	Test Sequence (0x44332211)				
010034	4	TCLK count				
010034	4	MDAT frame count				
01003C	2	Last TCLK received				
01003E	2	Last MDAT state received				
01003E	4	Data Interrupt count				
010040	4	Data merrupi count				

Address	Size	Description			
010044	4	Fast Sum Latch count			
010048	4	Slow Sum Latch count			
01004C	4	Very Slow Sum Latch count			
010050	4	Profile request count			
010054	4	Flash request count			
010058	4	Display request count			
01005C	4	Abort Interrupt count			
010060	4	Channel not OK interrupt count			
010064	4	Channel abort interrupt count			
010068	4	Crate abort interrupt count			
01006C	4	Missed Fast Latch count			
010070	4	Missed Slow Latch count			
010074	4	Missed Very Slow Latch count			
010078	2	Program State			
01007A	2	Number of fast data latches to wait until pedestals are done			
01007C	4	Last Fast Latch time microsecs			
010080	4	Last Fast Latch time seconds			
010084	4	Last Slow Latch time microsecs			
010088	4	Last Slow Latch time seconds			
01008C	4	Last Very Slow Latch time microsecs			
010090	4	Last Very Slow Latch time seconds			
010094	4	Stack Pointer (Updated every time through polling loop)			
010098	4	Stack Integrity (0xA4A3A2A1; also updated every loop)			
01009C	16	Digitizer Map (addresses of found digitizers; 16 th byte is 0)			
0100AC	4	Timing Card clock error count			
0100B0	4	Count of times TCLK queue has more than 1 entry			
0100B4	4	Count of times MDAT queue has more than 1 entry			
0100B8	4	Number of times a state \geq 64 was received			
0100BC	2	Last state machine input			
0100BE	2	Force prepare for beam event (requires 0xA596 to be written here)			
0100C0	2	Force end of beam event (requires 0xA596 to be written here)			
0100C2	2	Pause the system (requires 0xA596 to be written here). This happens			
		now if waiting for beam, or after next end of beam event.			
0100C4	2	Change the system state (requires 0xA596 to be written here).			
010100	1024	TCLK counts for each TCLK type (256 types)			
010500	1024	MDAT counts for each MDAT state (256 states)			
018000	2	Request a Control Bus memory dump			
018002	2	Request a Control Bus write (requires 0xA596 to be written here)			
018004	2	Control Bus address to dump / write (dumps 256 bytes / write 1 byte)			
018100	256	Data copied from / written to Control Bus (only 1 byte in case of write)			
019000	2	Request User Code to be run (requires 0xA596 to be written here)			
01A000	8192	Buffer for User Code to be placed			
	Flash Memory Download				

Address	Size	Description
020000	128K	Buffer for new flash memory contents
	L	Flash Frames
080000	512	Flash Frame 0
080200	512	Flash Frame 1
	l	
09FE00	512	Flash Frame 255
		Profile Frames
0A0000	512	Profile Frame 0
0A0200	512	Profile Frame 1
0BFE00	512	Profile Frame 255
		Display Frame
0C0000	512	Display Frame
		Abort Machine States
		State 0
100000	1	State Number
100002	2	Channel Masks 0 1 for Immediate Abort
100004	2	Channel Masks 2 3 for Immediate Abort
100006	2	Channel Masks 4 5 for Immediate Abort
100008	2	Channel Masks 6 7 for Immediate Abort
10000A	2	Channel Masks 0 1 for Fast Abort
10000C	2	Channel Masks 2 3 for Fast Abort
10000E	2	Channel Masks 4 5 for Fast Abort
100010	2	Channel Masks 6 7 for Fast Abort
100012	2	Channel Masks 0 1 for Slow Abort
100014	2	Channel Masks 2 3 for Slow Abort
100016	2	Channel Masks 4 5 for Slow Abort
100018	2	Channel Masks 6 7 for Slow Abort
10001A	2	Channel Masks 0 1 for Very Slow Abort
10001C	2	Channel Masks 2 3 for Very Slow Abort
10001E	2	Channel Masks 4 5 for Very Slow Abort
100020	2	Channel Masks 6 7 for Very Slow Abort
100022	2	Abort Multiplicity for Immediate and Fast Abort
100024	2	Abort Multiplicity for Slow and Very Slow Abort
100026	2	Crate Abort Mask
100028	8	Unused
100030	2	Channel 0 Immediate Threshold
100032	2	Channel 1 Immediate Threshold
1000A6	2	Channel 59 Immediate Threshold

Address	Size	Description
1000A8	8	Unused
1000B0	2	Channel 0 Fast Threshold LSW
1000B2	2	Channel 0 Fast Threshold MSW
1000B4	2	Channel 1 Fast Threshold LSW
1000B6	2	Channel 1 Fast Threshold MSW
	•	
10019C	2	Channel 59 Fast Threshold LSW
10019E	2	Channel 59 Fast Threshold MSW
1001A0	16	Unused
1001B0	2	Channel 0 Slow Threshold LSW
1001B2	2	Channel 0 Slow Threshold MSW
1001B4	2	Channel 1 Slow Threshold LSW
1001B6	2	Channel 1 Slow Threshold MSW
10029C	2	Channel 59 Slow Threshold LSW
10029E	2	Channel 59 Slow Threshold MSW
1002A0	16	Unused
1002B0	2	Channel 0 Very Slow Threshold LSW
1002B2	2	Channel 0 Very Slow Threshold MSW
1002B4	2	Channel 1 Very Slow Threshold LSW
1002B6	2	Channel 1 Very Slow Threshold MSW
10039C	2	Channel 59 Very Slow Threshold LSW
10039E	2	Channel 59 Very Slow Threshold MSW
1003A0	80	Unused
		States 1 – 255; each with same offsets as State 0
100400	1024	State 1 Settings
100800	1024	State 2 Settings
13F800	1024	State 255 Settings
		In Use Abort Settings for States 0-255
140000	256 K	Copy of settings that are in use. These are the settings that are copied to
		AC and DCs.
		Circular Buffers
200000	4 Meg	Fast Sum Buffer 16K frames deep
600000	1 Meg	Slow Sum Buffer 4K frames deep
700000	1 Meg	Very Slow Sum Buffer 4K frames deep