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Our motivation:

If Muon Cooling works one can:

+ Collide leptons at 3TeV

+ produce intense neutrino beams.

+ Produce low energy meson beams for HEP

=» This would support a Fermilab scale facility for years.
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The Achilles Heel of Accelerator Designs
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Metal surfaces provide power efficiency, stability, and control.
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MuCool work is directed at MICE (at RAL).

Muon Cooling, in Phase Space
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The Muon Ionization Cooling Experiment (MICE)
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-Needs: 1) Reach full £ field with 3 -5 T solenoid.
2) Reduce backgrounds in spectrometers.



We need to understand high gradients. Now.

+ MICE, and muon cooling, require high electric fields in high solenoidal fields.

» This physics/material science is not understood.
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The breakdown problem is very old.

Many have contributed - very early:
Paschen, Millikan Michelson, Lord Kelvin

In 1904, Lord Kelvin argued that: g8 - ‘ b &
* Field emission is electrons (electrions), 400 | .

- Electron emission may imply ion emission (damage), | I
* Local fields of ~ 9.6 GV/m would do this,

- Tensile strength is an important parameter,
- Better experiments are needed.

Potential difference. V

We agree.




Modeling is necessary.

- "About 30 years ago there was much talk that
geologists ought only to observe and not theorize; and
I well remember someone saying that at this rate a
man might as well go into a gravel-pit and count the
pebbles and describe the colours. How odd it is that
anyone should not see that all observation must be
for or against some view if it is fo be of any service.”

Charles Darwin, 1861




The high gradient universe.
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Bureaucratic Problem: Funding is divided up.
* Individual Projects are funded.
- Each decides R&D priorities separately.

+ Basic R&D is not coordinated
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Can ILC and CLIC be limited by the same mechanism?

CLIC and ILC may be limited by the same mechanism, but the two problems cannot be
studied together - and aren't studied separately.
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Cultural problem: Procedures

* Your Brain * Your brain after a Fowler-Nordheim plot

* In the F-N expression

. 2 C2 0.0
JFN = c1E° exp %) I

the local surface field BEne.s must be used.

) People P|°'|' IOQIO(R/E2'5) vs. I/E. different numbers -
(or' |091o(R/EZ) VS. I/E) (equally confusing) 2o
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Historical Problem: Mythology
- People don't see the "Telephone pole” emitters they expect.

» but sharp corners give high local fields.
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Why structures fail.

Normal metals Superconductors
- Stresses from electric fields + Field emission heats cavity
exceed material tensile strength. before tensile stress limit.
E~76V/m - E~46V/m
=

- Skin currents damage walls. B> H., material goes normal
AT~ 100° B~180mT



We can measure the local fields directly.

Current./ (A), or current density, i (A/m”)
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What are the limits of acceleration technologies?

» The conventional wisdom, Metals limited to 50 - 70 MV/m, seems_wrong.

Normal Metal SuperConducting RF Dielectrics
A Accelerating field
4 Surface field (GV/m) TR
1000 H, =324mT ? Undamaged
| (460 GeV/m seen) H. = 150mT Displacive
Radiation Damage
100 9
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- Limits are unknown, material science needed.



People

Part of the Neutrino Factory and Muon Collider Collaboration - Muon Cooling
- Experiments in Fermilab MuCool Test Area (MTA) , aimed at MICE

J. Norem, Argonne

A. Moretti, A. Bross, Z. Qian, B. Norris, FNAL

Y. Torun, IIT

D. Li, M. Zisman, S Virostek LBNL

R. Rimmer, JLab

R. Johnson, P. Hanlet, et. al, Muons Inc.

+ many others

- Modeling of breakdown and cavity parameters
Z. Insepov, A. Hassanein, ANL

- Surface studies with Atom Probe Tomography at Northwestern Univ.
D. Seidman, K. Yoon, NW

- Plasma modeling (B and gas effects)
P. Stoltz, Tech-X Corp



RF experiments are in th MuCool Test Area (MTA) at Fermilab
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Our 805 MHz program.

We have unique hardware, can study many variables:

- Operation: 201 vs. 805 MHz. ¢ gi

* Magnetic field: 0 -5 T solenoid on the 805. —

* Materials: Cu, Be, SS, Mo, Mo(alloys), W, Nb

- High Pressure (Muons Inc.) H; and He
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201 MHz Program.
» Conditioning / br'eakdown wmdow tests. 16 MV/m with B=0
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Atom Probe Tomography (at Northwestern)

* A systematic way of studying the effects of high fields on material.
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The Model: Local fields + enhancements determine everything.
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The Process of Breakdown

Field emission is the diagnostic.

Fracture is the frigger.

Field emission heating makes a lossy plasma.

The lossy plasma directs the EM energy to the wall.

An equilibrium state develops between the structure and the surface.

10 - 100 J stored energy
E Field

\, / Stress ~ 300 MPa

Fracture Field emission heating Discharge

Power density ~ 10 Wi’

(gt




Spectra of field emitters (enhancement factors)
s (B, material)

N A
nitial distribution of

Two functions
7 determine conditioning
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We have measured s;(8) during cavity operation.

+ We looked at individual emitters, and measured spectra produced in discharges
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* From the emitter intensities at different fields we can measure the spectrum of
field enhancements



The maximum operating field

- Stable operation demands that:

Breakdown events cannot create more damage than they destroy.

- This constraint relates the maximum S and the discharge energy.

A ' ‘ " :—r - "- "4 '.'
Damage spectra, s (3) .[‘m;i\ 7 GVim ﬁcq
4 Stored energy Gives
o T " 5cq (U) o
Enhancement Factor, [3 Discharge energy

+ The damage spectra seem to be defined by s>(8, mat’/, Ugs, geom. . .) ~ Uyis €

so one can find f.q from the constraint that [ s,(B,mat'l,U ;,.ge0m ...)dp = p.
B,

. Thus if s2(8) = Ue™, then e ~ - In(b/ U)/b.



Perry Wilson

AACO6
Rev. 7/25/06

A Theory for the RF Surface For Metals at the Destructive

Breakdown Limit
Perry Wilson
SEAC

By destructive breakdown we mean a breakdown event that results in surface melting
over a macroscopic area in a high E-field region. A plasma forms over the molten
area, bombarding the surface with an intense ion current (~ 10°A/cm®), which is
equivalent to a pressure of about a thousand Atmospheres. This pressure causes
molten copper to migrate away from the high-pressure region near the iris tip,
resulting in a measurable change in the iris shape.

The four Stages of breakdown

1. The formation of plasma spots and individual craters in high field regions on
the metal surface.

2. Setting up the conditions for surface melting—crater clustering.

3. Prediction for the surface field at the threshold for destructive breakdown.

4. From surface melting to destructive breakdown.

7



There is a lot of data around:

fracture heating plasmadebris Who
Breakdown rate vs. E X X X all
Breakdown rate vs. pulselength X S
Breakdown rate within pulse X Cs
Materials X X X CSKF
Conditioning process X X all
Magnetic fields X X X X FMA
Breakdown timescale X X all
Frequency scaling X all
Small gap breakdown X C
DC breakdown X X C
Disappearance of field emitters X F
Fatigue X CF
Atom Probe Sample failure X A
Surface morphology X X AF
Plasma spots X S
Crater clustering X SF
Correlated events, site lifetime X SFA
Superconducting systems X AF
Temperature X AC
High current densities in walls X X FAC
Gas, type and pressure X X M
Measure si(B), s2(B), s3(B) X X AF
Triggers X all
Special cavities X X X S
Geometry X all
Power supply X all
Lightswitches X all

Who is doing what: FNAL, ANL, SLAC, Muons Inc., CERN, KEK



Using the model: I) Conditioning

Surface field, local field (VM/m), and f8

 Breakdown occurs when Ejycqt ~ 7 GV/m

* Only the emitters change, local field is constant.
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Using the model: IT) Materials

» Only materials change, everything else constant.

* The model argues that tensile strength is the dominant effect.

Elocal ~ \/ 2T/SO

B In(bla)/b
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Using the model: ITI) Pulse length
* Only pulse length changes, everything else constant.

* More damage =¥ lower gradients

» Predictions and data show no dependence on position of breakdown within pulse.
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Using the model: IV) The fully-conditioned state

* When you look at emitters, they are all the same strength.

- Assume s3(/3)=sz(ﬁ)/(e(ﬁ"ﬁeq)/c+1) (F-D cutoff - very sharp g %)

- Images of emitters .................. show emitter strengths
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Using the model: V) Breakdown rates vs. E.

- These are surprisingly sharp, yet consistent with fully-conditioned state

+ Thresholds go like ~£>°.
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Using the model: VI) Breakdown rates vs. pulse length

* Rate vs pulselength is a function of Rate(£) and Epnux(t), (dR 4R dE).
dr dE dt

- Data from the Fermilab Linac and SLAC/NLC prototype follow t°, as predicted.
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Using the model: VIT) Temperature dependence

* A molecular dynamics model predicts little temperature dependence. (Insepov)

- This is consistent with CERN/CLIC results.
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Using the model: VIIT) Gas Pressure and type

* Gas pressure retards field emitted electrons heating broken fragments
This can disrupt the trigger, for low Z gasses.

* We can also explain how SF¢ can affect breakdown.
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Using the model: IX) Dielectrics

» High pressure gasses are an option for muon cooling.

» Realistic muon beams require Gas + High Gradient + Radiation

- Radiation comes two ways: 1) ionizing, and 2) displacive. 1) is our problem.

+ We can measure loss tangents vs. Pressure in a radiation environment.
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Using the model: X) Correlated breakdown events
+ Correlated breakdown events measure breakdown site lifetime.

- Fatigue theory relates strain fo lifetime. A spectrum of strains seems required.
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Fatigue: the Manson-Coffin Relation
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Using the model: XI) DC breakdown
- This also fits the model, with breakdown at 7 GV/m.
* Most of this data is very old and unreliable, but they did clever things.

* Vacuum and cleaning techniques were not always well done.

100 T

T T T ™y T T
— Local Electric Field
= 10k -
A 3 o - % " 3
>— - e L] ., . . oy _,.; e
o
f\.:
=~
—
s=R .
(5] b y
= 1'(-,,
u ({\.’“( S'
— Urg:
5~ U
= V>
' . (l
- 0.1 v .
Alpert. et al. ). Appl. Phys. (1964)
0.01 PPETTTY PR TTT BT TTIT B TTTTY BT RrEerer RS rrTT PRy
107 10 107 0.00001 0.001 001 0.1 I

Gap (m)



Using the model: XIT) Maximum field vs. frequency

» Each cavity / PS system is unique.

* Our model gives Kilpatrick-like scaling laws.
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Using the model: XIIT) High Solenoidal fields
- This behavior is consistent with mechanical stress causing breakdown
» The geometry of the cavity seems to matter.

* Other effects (magnetic confinement of damage) may contribute.
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Using the model: XIV) Superconducing rf

Radiation, mR/hr

* For SCRF Emax = (4 6V/m)/ B, NCRF Emax=(7 6V/m)/ B

* Radiation levels, show SCRF for SNS has similar problems to NCRF.
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Using the model: XV) Atom Probe Measurements

-+ Atom probe measurements show sample failure at approximately 7 GV/m.
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Surface gradients of ~500 GeV/m are measured.



A New Entity

The US Collaboration on High Gradient Research for a Multi-TeV Linear Collider,
which seems to be aimed at developing, and optimizing CLIC technology has been
formed in the past year.

* Ron Ruth, at SLAC, is the Spokesman.

Membership consists of:
Labs: ANL, LBNL, NRL, SLAC
Universities: U of Md, MIT, UCLA, U of Colo.
Business Associates: Omega-p, Calabazas Creek Res, Tech-X, Euclid, CPT
Foreign Associates: CERN, KEK

» The collaboration itself will have no direct funding, and proposals and funding will
be handled as separate projects.



What needs to be done:

- MTA experiments
Continue to study magnetic field effects, high pressure, materials

* Modeling
Model trigger, (fracture, ionization)
Model Plasmas with Strong £ and B fields, high gas pressures

» Study fracture of materials with realistic surfaces
Atom Probe Tomography technology ideal

Surface modification with Gas Cluster Ion Beams

- Continue to try to understand all other experiments.



Specific Conclusions
» A simple model can explain all the data.

* More precision is required.

More General Conclusions
- High Gradient research (high and low frequency, normal and SC) is one field.

» Gradient limits should be a science.
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