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Beam position at the j-th BPM after a single kick:

2 = Blei®: A,elQ=(05+2mn) 4 (z=1x,y)

n = turn number A, = \Az\e“sz = constant of motion

0
o, = / do /ﬁﬁ — Q.0 (periodic phase function)
0 z

Twiss functions may be computed through a Fourier analysis:

Z;(Q,) = Fourier component of z;

B2 =1Z;(Q) /A2 pl = arg (Z;) — 6.
Amplitude fit:
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TBT measurement goal for MI (besides optics measurement

e measure dependence of tunes and phase advance upon bunch current

e measure dependence of closed orbit upon bunch current
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Figure. 1. Dependence of phase advances on bunch current
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Two data sets are here analysed (30 bunches, machine status 15

e 4 TBT data with 0.3 el2 particles

e 4 TBT data with 1.2 el2 particles

The large aperture quadrupole BPMs have been excluded from the analysis.



MI data (October 26)

Turn by turn data Closed Orbit
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The first turn fit indicates that the “turn order uncertainty” has been correctly removed.



Horizontal beta function Vertical beta function
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Some vertical BPMs show a “systematic” (understood!) calibration error in the TBT mode:

name db/b | closed orbit(mm)
I:VP401 | 0.5 -2.6
I:VP403 | 1.0 -2.7
ILVP523 | 0.5 2.1
I:VP607 | 1.5 -2.5
I:VP609 | 1.9 1.9
I:VP611 | 0.5 0.1
I:VP619 | 1.0 0.0
I:VP621 | 0.6 2.2




beta,

db/b
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Averaging over all low current measurements and excluding “bad” BPMs:
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Phase advance beating Phase advance beating
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Fourier Analysis of beta-beat (BPMs with db/b < 0.3 retained)

Beta-beat Fourier Analysis Beta-beat Fourier Analysis
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Peaks expected at 39 and 41.



0.02

0.01

-0.01

dmu,

-0.02

-0.03

-0.04

-0.05

Last TBT data set has been excluded. Phases have been rescaled with total averaged tune

Dependence of phase advance upon beam current
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corresponding to the same beam current. No large evidence of a localised reactive impedance.



Making for instance a linear fit of the low current vertical tune values vs. time and

extrapolating, it looks as there is a dependence upon bunch current:
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Due to the longer bunches, the factor relating phase advance slope to the impedance is much

larger when compared to lepton machines: the same impedance produces a much smaller slope.
With d@ = 27 x 0.00081 and dI = 0.434 mA is ZT =53 MQ m~1! (!).



Dependence of closed orbit upon beam current

Closed Orbit MI dispersion
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This is the horizontal dispersion: the energy of the high current beam was smaller (~ 0.1 %)

than the energy of the low current beam?!



Fit to the theoretical dispersion:

At (min) | dp/p (%) | [Tmeas — Tritlrms
8 -0.002 0.02
15 0.001 0.02
20 0.001 0.01
44 0.065 0.14
51 0.065 0.14
54 0.091 0.14
56 0.095 0.22

A step rather than a drift. Subtracting the contribution of the dispersion orbit:

Orbit difference after subtracting dispersion orbit
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Can the step observed in the vertical tune be explained by this energy step rather than by the
beam current change? It can well be:

2w x 0.00081 _ 5
a 0.1% -

Ap
AQ=¢=" ¢
p
A sensible number.

Conclusions

e A possible current dependence of the total tunes has been washed out by a tune drift with

time. The tune drift is not related to the energy change observed in the closed orbit.

e The step observed in the tunes can be explained by the machine energy change, but as the

chromaticity has been not measured, it is not known up to which amount.

e A possible closed orbit dependence upon current has been overwhelmed by a relatively large

beam energy change.
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What can we do better?

For this measurement, the bunchlenght should be kept constant by increasing the RF voltage

when injecting larger currents.
Increase current range decreasing the low current.

Lower chromaticity to get longer lasting oscillations and minimise tune dependence upon

energy.

Can we have better control of tunes and machine energy? If not, we must improve the

measurement strategy: take more data, alternating low and high current.

Suggestions?
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