Fermilab

Accelerator Division/LHC Accelerator-Fermilab Software (LAFS)

Friday, February 16, 2007

Timofei Bolshakov
Elliott McCrory
Dennis Nicklaus
Jerry Cai

We present here an implementation to add functionality to the existing Timber datalogger
database in order to provide SDA-like functionality. In particular, the ability to address data in the
datalogger using the temporal abstractions of SDA is created. This proposal has been prototyped at
Fermilab. Database tables and Java interfaces to these tables are presented.

All of the Java classes are implemented in the package gov.fnal.sda.db.models as the class
AlaCERNModel.

The Database Model

A database model has been created to represent the data in the Timber database as if it were
SDA data, that is, the data are indexed through the time abstractions defined by SDA: Shot, Case and
Set. The model consists of these five database tables:

= raw_datalogger
» sda

= device_names

= owner_names

= case_names
The last three tables allow for the naming of the devices, the owners and the cases, respectively.

All the tables are created in the Java method called clearModel.

It is possible to implement this translation in other ways since substitutions of deviceld =

name, ownerld - name and ownerld, caseld > name can be done at a different level, not necessarily
in the SQL or in the model at all.

raw_datalogger is a table that maps unique(device_index, timestamp) = double_value. That
is an abstraction for the CERN datalogging scheme that should be accurate enough for these purposes.

This assumes a straight-forward UTC time indexed datalogger (the Fermilab “Lumberjack™ datalogger
1s not).

The sda table contains only SDA timestamps. It has many fields describing all of the possible
SDA structure—it is first of all mappings,

indexed(ownerld, shot, case, set), unique(shot_index, collection_index), valid = start_ts, finish_ts

The contents of the raw_datalogger and the sda tables can be dumped by the methods
dumpRawDatal.ogger and dumpSDA. In these dumps, names from device_names, owner_names,

case_names are derived and presented.

We have used HSQLDB for speed and simplicity. To allow an easy switch to other relational
DB servers, the database connection is encapsulated into the internal Java class called DbServer.

It is necessary to test this database model and try to filter time stamped device readings using
SQL statements. Furthermore, we want to experiment with the first version of Time Abstraction API
for SDA, described in the next section.

This schema has been tested using randomly generated data in the Java method makeUpData.
For example, data for the tables raw_datalogger and sda have been generated ensuring that all the
general assumptions about SDA data are true. Some of the assumptions that have been tested are:

= Overlapping cases
= Several shots for different owners happening simultaneously,
= Multi-set cases and single-set cases

= Non-concurrent cases, monopolizing SDA for a given owner, etc.

Time Abstraction for SDA

Class SdaTimelnterval from package gov.fnal.sda.osda represents the time abstraction for
SDA. It has a logical level according to hierarchy:

general (0) 2 owner (1) > shot (2) 2 case (3) 2> set (4)

That is, sets are owned by a case; cases are owned by a shot; shots are owned by an owner and an
owner is held in a general slot. Logical path information is held in the logicCoords integer array:

= JlogicCoords[0] = owner,
= JlogicCoords[1] = shot,

= JogicCoords[2] = case,

SDA_and_raw_datalogging_Details.doc Page 2 2/16/2007

» logicCoords[3] = set.

The value of -1 means that it has not been initialized. Therefore, this rule always holds:
if logicCoords[i] ==-1and i< j then logicCoords| j] ==-1;

This figure shows this SDA tree layout schematically.

SDA (Root)

: !
| Shot Type 1 | | Shot Type 2 | Shot Type n
| Shot Instance 1 | ‘ Shot In:tance 2 | . Shot Instance n

Casen
“Mame n"

Case Case 2 Case 3
“Mame 1" “Mame 2" “Marme 3"

m [sese] | [sious| [sioumQ |

]
o
@
(2]
o
o
3
(7]

The next figure shows, as an example, how one instance of an SDA tree might look. Note that
one can have as many “Owners” as necessary, but these are generally fixed. It is possible to add new

“owners” as the need arises.

SDA_and_raw_datalogging_Details.doc Page 3 2/16/2007

SDA (Root)

|
| ! ! ! }

Shot Type 1 Shot Type 2 Shot Type 3 Shot Type 4 Shot Type 5
0 - “Name 1" 1 = “Apple” 2 = “ColliderStore” 3 = “Pear” 4 - “Walnut”
| Instance 234 || Instance 235 || Instance 236 H Instance 237 || Instance 238 || Instance 458 H Instance 50 || Instance 51 |

N R U e B D B D D A B

Case 4
Tend

L,

Case 4
Pick

Case 2
Grow

Case 3
Tend

Case 1
Flant

Case 4
Pick

Case 2
Grow

Case 3
Tend

Case 1
Flant

Case 5
Pick

Case 2
Grow

Case 3
Spray

Case 1
Flant

T3

It is usually necessary to relate one shot instance to another. This connection is added onto the

m | saseD | [sjoug| | s1eumQ |

0
=)
o
(2]
=
o
3
[%]

standard tree that is depicted here.

In addition to logicCoords there are uniqueCoords that may serve as database keys (recall that
some shots and collections may be “stored over”). If the flag valid is not “stored over,” uniqueCoords
has similar meaning and rules as logicCoords. For convenience each SdaTimelnterval should have
an ownerName and a caseName. The values of logicCoords, uniqueCoords and names in
SdaTimelnterval must be unmodifiable.

Each SdaTimelnterval may have children SdaTimelnterval’s.
SdaTimelnterval defines these obvious getters:
= getOwner
= getOwnerName
= getShot

= getShotName ...

SdaTimelnterval define these boolean methods to determine the relative time placement of

multiple instances of it:
= includes,
= overlaps

= jnsideOf

SDA_and_raw_datalogging_Details.doc Page 4 2/16/2007

= before
= after

* includes (for long timestamp).

SdaTimelterval also have several more complicated methods:

= public SdaTimelnterval refine(int[Jrefinement) - can be used for selecting all of the initial
sets of the “high energy physics” cases for all shots within an extended period of time, for
example:
SdaTimeInterval year = XXX.buildTimeInterval(Today - OneYear, Today);
List < SdaTimeInterval > allFirstHEPSets = year.refine(new int[1l, -1, 14,
1]).getlLeafs(Q);
= public SdaTimelnterval getRelevant(long ts) - builds new time interval that contains only
the shots, cases and sets for the timestamp, ts. It can be used for coloring datalogger data, for
example:
SdaTimeInterval shot = XXX.buildTimeIntervalForShot(new int[]{1,5008,-1,-1});
List < Pair < Long, Double > > protonIntensityOfBunchl
= datalogger.read("C:FBIPNG[1]", shot.getStart(), shot.getStop());
for(Pair < Long, Double > p : protonIntensityOfBunchl){

List < SdaTimeInterval > collections = shot.getRelevant(p.first())
.getlLeafs();

print(new Date(p.first())); print("\t"); print(p.second()); print(

"\t");
print("System state: \t");
for(SdaTimeInterval coll : collections)
{ print(coll.getCaseName()); print(":"); print(coll.getSet()); }
printinQ);
3

= public final boolean insertAccordingToLogic(SdaTimelnterval interval) includes a child
interval, if possible, in appropriate branch.

= public boolean differentBranch(SdaTimelnterval interval) determines that this and interval
are on the same branch of the SDA tree .

= public String toXml() — serialize this object into XML.

= public static SdaTimeInterval fromXml(String xml) is not implemented yet, but it will be

necessary when toXml() is utilized.

SDA_and_raw_datalogging_Details.doc Page 5 2/16/2007

Results and Conclusions

The advantages of this approach are as follows:

1. Filling the sda table (“SDA timestamps and nothing else”) requires minimal changes in just one
implementation of the SDA interface class gov.fnal.sda.db.xmldb.XmlDagqDataWriter. The
changes that are necessary are, roughly, six SQL queries. Thus, it comes for free with the
normal SDA system.

2. SdaTimelnterval can be filled from an XML database as well. May be that the “offspring”
time abstraction API will require another plugin for reading.

3. Filtering of device readings on the SQL level using a “SQL WHERE” condition and “JOINs” is
possible and should have good performance. (We did not measure it because it is only in a test
DB.)

4. The Hierarchical Time Abstraction API is relatively convenient and allows for all necessary
timestamp / time intervals manipulations.

5. The Hierarchical Time Abstraction API allows an analog of the SDA Viewer to be written.
6. Itis lightweight and does not include an XML database.

7. The amount of configuration needed to bring system up and running is small — only minimal
attention from CERN people would be required.

8. Timestamps and intervals are available for other CERN programmers through an SQL query.
Disadvantages (in case there is no normal SDA implementation):

1. The system cannot guarantee that something will be read and stored for a particular collection.
Our simulations show that holes like these occur regularly.

2. The ability to store big chunks of data that are collected at the right time (‘“sampled on the right
event”) is gone.

3. The system does not work as a backup for the normal datalogger.

The main advantage is #7. As for the disadvantages, we advocate for implementing normal SDA,
with a relational DB or with DB XML, coupled by this sda table.

SDA_and_raw_datalogging_Details.doc Page 6 2/16/2007

Appendix A. SQL queries to create a table.

The last version of this SQL file can be found in controls CVS in directory
gov/fnal/sda/db/models as a la cern_sda.sql.

create table a la cern raw datalogger(
devIndex INT not null,
ts BIGINT not null,
devReading REAL not null

)

create unique index a la cern datalogger idx on a la cern raw datalogger(devIndex,
ts)

create index a la cern datalogger ts on a la cern raw datalogger(ts)
create index a la cern datalogger devIndex on a la cern raw datalogger(devIndex)

create table a la cern_di2name(
devIndex INT not null,
devName VARCHAR(255) not null
)
create unique index a la cern di2name name on a la cern di2name(devName)

create unique index a la cern _di2name_idx on a_la cern di2name(devIndex)

create table a la cern sda(

owner INT not null,
shot INT not null,
theCase INT not null,
theSet INT not null,

file idx INT not null,
coll idx INT not null,

valid BIT DEFAULT 1,
tStart BIGINT not null,
tStop BIGINT not null

)

create unique index a la cern sda on a la cern sda(owner, file idx, coll idx)

(
create index a la cern sda h on a _la cern sda(owner, shot, theCase, theSet)
create index a la cern sda tstart on a la cern sda(tStart)
create index a la cern sda tstop on a la cern sda(tStop)

SDA_and_raw_datalogging_Details.doc Page 7 2/16/2007

create table a la cern owner2name(
owner INT not null,

ownerName VARCHAR(255) not null

)

create unique index a_la cern_o2n_

create unique index a la cern_o2n_

create table a la cern case2name(
owner INT not null,
theCase INT not null,

0

n

on a_la cern_owner2name(owner)

on a la cern _owner2name(ownerName

caseName VARCHAR(255) not null

)

create unique index a_la cern_c2n_

create index a la cern_c2n_

grant select,insert,update,delete
grant select,insert,update,delete
grant select,insert,update,delete
grant select,insert,update,delete
grant select,insert,update,delete

SDA_and_raw_datalogging_Details.doc

0

n

on

on

on

on

on

)

on a_la cern case2name(owner, theCase)

on a_la cern case2name(caseName)

a la cern _raw datalogger to public

a la cern sda to public

a_la cern di2name to public

a la cern case2name to public

a_la cern _owner2name to public
Page 8

2/16/2007

	Friday, February 16, 2007
	The Database Model
	Time Abstraction for SDA
	Results and Conclusions
	Appendix A. SQL queries to create a table.

