Stacktail Beam Transfer Function Measurement Procedure

Initial Conditions

- 1. Stacking off.
 - ARF1 off (A:R1HLSC = OFF)
 - Stacktail off (A:SPPS01 = OFF, make sure A:SPAM09 is still on)
 - Pulsed devices off
 - Stacktail monitor ACL script OFF
- 2. Small amount (> 7 mA) of p beam cooled into the core.

Measurements to be made

f_{rev}	Measurements	Beam Intensity	Notes
Core	Stacktail Legs 1, 2, and 3	7.0 mA	
	Core 2-4 GHz Δp		
628890 Hz	Core 4-8 GHz Δp	3.5 mA	
	Stacktail Legs 1, 2, and 3		
628865 Hz	Stacktail Legs 1, 2, and 3	200 μΑ	Blow up beam longitudinally after measurements complete. Add 90 psec to A:CMTM01.
628840 Hz	Stacktail Legs 1, 2, and 3	50 μΑ	On resonance Osc Pwr = -20 dB No longitudinal cooling. Do leg 3 first, then leg 2, then leg 1

Measurement Procedure

- 1. Initial Move (beam on core orbit)
 - a. Set P142 to "normal" mode (A:VSARST = 0)
 - b. Measure core frequency (A:CENFRQ)
 - c. Turn off core cooling
 - d. Move beam to target f_{rev} Run P-BAR Sequencer (Mode 2) aggregate "Move Beam with ARF3"
- 2. Set up 4-8 GHz Δp cooling at target f_{rev} using the procedure given below (except at f_{rev} = 628840 Hz).
- 3. Scrape tails of beam longitudinal distribution. Scrape beam until A:IBEAM is at the prescribed intensity (see table under <u>Measurements to be made</u>).

Use the table below for *approximate* guidance as to where to place the scrapers:

$f_{\it rev}$	A:LJ314	A:RJ314
628897 Hz	62.6 mm	81.5 mm
628890 Hz	52.4 mm	74.1 mm
628865 Hz	30.0 mm	39.9 mm
628840 Hz	5.3 mm	15.7 mm

- 4. Remove scrapers
- 5. Save "before measurement" longitudinal profile (SA4) using P44.
- 6. Turn off stacktail notch filter long legs (A:SPXFL1, A:SPXFL2, A:SPXFL3 to position 1)
- 7. Perform single band BTF to determine the off-resonance measurement frequency.
- 8. Perform broad band BTF (1.5 4.5 GHz) measurements both on resonance and off resonance.
- 9. Save "after measurement" longitudinal profile (SA4) using P44.

Setting up 4-8 GHz Δp core cooling

$f_{\it rev}$	A:MARAYD	A:CMTM01
628897 Hz	-37.6 mm	317 psec
628890 Hz	-28.9 mm	330 psec
628865 Hz	-0.7 mm	358 psec

- 1. Move 4-8 GHz core Δp pickup over beam
 - a. Record A:MARAYD and A:CMTM01 core orbit settings.
 - b. Set A:MARAYD according to the above table
 - c. For revolution frequencies not in the table, set A:MARAYD to approximately the position corresponding to the present revolution frequency given by:

$$\Delta x = -\frac{D}{\eta} \frac{\Delta f}{f}$$

where D = 10.0 m and η = 0.0138. The pickup moves outward (Δx > 0) as f_{rev} decreases.

- d. Observe CP48-SCH on SA1
 - Set A:RLLFS0 to the present value of f_{rev} .
 - Load P41 file 22 to SA1
- e. Adjust A:MARAYD until notch is at center of screen
- 2. Set A:CMTM01.
 - a. Set A:CMTM01 according to the above table
 - b. For revolution frequencies not in the table, use the following to determine the delay change relative to the core setting:

$$\Delta t = \frac{1}{2} \left(\frac{1}{f_{rev}} - \frac{1}{f_{core}} \right)$$

- 3. Turn on A:CMPS01
- 4. Observe beam longitudinal profile on SA4. Verify average frequency of distribution is not changing before beginning BTF measurements.

Measure Stacktail Notch Filters

Setup P31 as follows:

- 1. System Select = MANUAL
- 2. Measurement Type = One Band Manual
- 3. Start frequency = 1500 MHz
- 4. Stop frequency = 4500 MHz
- 5. No. Points = 401

Filter 1

- 1. Switch settings:
 - NA OUT → SP24-FSW
 - NA IN → SP24-PF1
 - Set A:SP2T01 to position 1
- 2. Calibration:

Turn long leg off (A:SPXFL1 to position 1)

- 3. Measurement:
 - A:SPXFL1 → 2 (long leg ON)
 - A:SPXFS1 → 1 (Short leg OFF)
- 4. Restore:
 - A:SP2T01 → 2
 - A:SPXFS1 \rightarrow 2

Filter 2

- 1. Switch settings:
 - NA OUT → SP24-FSW
 - NA IN → SP24-PF2
 - Set A:SP2T02 to position 1
- 2. Calibration:

Turn long leg off (A:SPXFL2 to position 1)

- 3. Measurement:
 - A:SPXFL2 → 2 (long leg ON)
 - A:SPXFS2 → 1 (Short leg OFF)
- 4. Restore:
 - A:SP2T02 → 2
 - A:SPXFS2 → 2

Filter 3

- 1. Switch settings:
 - NA OUT → SP24-TRO
 - NA IN → SP24-PF3
 - Set A:SPXM01 to position 1
 - Verify that A:SPPS01 is ON
- 2. Calibration:

Turn long leg off (A:SPXFL3 to position 1)

- 3. Measurement:
 - A:SPXFL3 → 2 (long leg ON)
 - A:SPXFS3 → 1 (Short leg OFF)
- 4. Restore:
 - A:SP2T03 → 2
 - A:SPXM01 → 2

Things to put back

- 1. Scrapers all the way out
- 2. Turn ON Stacktail notch filter long legs
- 3. Set A:RLLFS0 = 628897.5 Hz
- 4. Restore ARF2:
 - a. A:R2DDS1 = 628897.5 Hz
 - b. A:R2HLSC ON
- 5. Restore 4-8 GHz core Δp cooling:
 - a. Set A:MARAYD to its original position
 - b. Set A:CMTM01 to its original value
- 6. Restore bunch rotation display to SA1 (Load P188 file 99)
- 7. Turn on core cooling
- 8. Turn on ARF1
- 9. Return VSA to stacktail monitoring