

Nb3Sn Accelerator Magnet R&D and LHC Luminosity Upgrades

Alexander Zlobin Fermilab

<u>Introduction</u>

Nb3Sn magnets provide

- o higher fields Bc2~27 T
- o Higher temperature margin Tc~18 K
- o More efficient coil high Jc

Possible applications:

 LHC upgrades, critical ILC components, MC magnet systems, future HC, etc.

- During past 15 years Nb3Sn accelerator magnet R&D was centered in U.S.
 - $o\$ since 2003 it is coordinated by US-LARP
- Nb3Sn is brittle material => new coil fabrication techniques
 - $o\,$ special attention to coil handling, assembly and operation.
- Fermilab's Nb3Sn Program focuses on shell-type coils, the W&R method, new and traditional mechanical structures.
- The primary goal new generation IR quadrupoles for the planned LHC luminosity upgrades

Nb3Sn Accelerator magnets

- o Strands and cable
- o **Coils**
- o Mechanical structures
- o **R&D issues**

***** Technology development and demonstration

- o Short model R&D
- o Nb3Sn technology scale up
- o Issues and next steps

Nb3Sn IRQ for the LHC upgrade

o Phase I and Phase II

<u>Nb3Sn Strands</u>

Two basic technologies of high-Jc strands

- o IT MJR, RRP (OST, U.S.)
- o PIT (ESC, EU)

Strand properties

- o High Jc
- o Relatively large deff

* Issues

- o Large magnetization
- o Flux jumps
- Effect on magnet performance
 - o quench performance
 - o field quality

Nb3Sn Rutherford cable issues:

- Ic degradation due to plastic deformation=>low packing factor=>cable mechanical stability=>coil winding
- Sub-element deformation/breakage/merging during cabling=>deff and RRR=>flux jump instabilities
- Ic degradation due to transverse pressure=>coil pre-stress limit
- Strand sintering during reacting=>low interstrand resistance=>field quality, quench performance

<u>Nb3Sn Coils</u>

1.2

Coil fabrication technology

- o W&R method
- o special high-temperature insulation
- o metallic coil components
- o ceramic binder
- coil vacuum impregnation with epoxy

Issues

- Conductor expansion after reaction=>coil geometry
- Coil plasticity=>coil size measurement, coil prestress
- Impact=>magnet geometry and pre-stress
 - o Quench performance
 - o Field quality
 - o Scale up

Nb3Sn Accelerator Magnet R&D and LHC Luminosity Upgrades

A. Zlobin

6

<u>Mechanical Structures</u>

- Structures
 - o The traditional collar-based structure
 - o Shell-type structures SS or Al shells
 - o **Hybrid**
- * Issues
 - o safe coil pre-stress up to high stress (~150 MPa)
 - o radial and axial support
 - o precise geometry and alignment

Hybrid - SS collar and Shell

APT Seminar, March 13, 2008

Nb3Sn Accelerator Magnet R&D and LHC Luminosity Upgrades A. Zlobin

- Strand Jc, magnetization, stability
- Sub-element deformation/breakage/merging during cabling
- Ic degradation due to transverse pressure
- Interstrand resistance control
- * Coil fabrication, geometry control, mechanical properties
- Coil pre-stress and support with mechanical structure

<u>Dipole Models</u>

Nb₃Sn dipole models (HFDA):

- o Compact mechanical structure
- o High-J_c 1-mm Nb₃Sn strand
- o 27-28 strand cable
- o 2-layer coil
- o 43.5-mm diameter bore
- $\rm o~$ Maximum field ~12 T at 4.5 K

Magnetic mirror (HFDM):

- The same mechanical structure and assembly procedure
- o Advanced instrumentation
- o Shorter turnaround time
- o Lower cost

HFDA dipole & HFDM mirror

0 **G**

Design parameters

 Gmax~230/250 T/m at 4.5/1.9 K (Bmax~12-13 T)

APT Seminar, March 13, 2008

Skin

Yoke

Technology Quadrupoles (TQ)

Stress Relief Slot

Preload Shim

Collaring

Key

Collar

in inner pole

LARP Technology quadrupole (TQ):

- TQC Hybrid mechanical structure (collar, yoke, SS skin)
- o TQS Al shell based structure

Design features:

- same two-layer coil design and technology
- o same Nb3Sn strand and cable
- o High-J_c 0.7-mm Nb₃Sn strand
- o 27 strand cable
- o **2-layer coil**
- o 90-mm diameter bore

Gap Yoke Control Spacer

6 short dipole and 6 mirror models were fabricated and tested

- ***** Models with 1-mm MJR-54/61 strand => flux jump limitations.
- Models with 1-mm PIT-196 strand, reached 9.4 T @4.5K and ~10.2 T @2.2K (100% of PIT strand SSL).
- Dipole mirror model with 1-mm RRP 108/127 strand, reached ~11.4 T at 4.5 K (97% of SSL)
 - o instabilities at ~21kA
- General features
 - o Training starts at ~80% of magnet Short Sample Limit (SSL)
 - Quite long training

TQC Quench Performance

12

* 4 TQC and 5 TQS models

- o MJR 54/61 low Jc strand
- o RRP 54/61 high-Jc strand

Performance

- MJR models: Gmax~200 T/m at 1.9 K
- RRP models: Gmax~200-215 T/m at 4.5 K

* TQC and TQS comparison:

- Quite long training (similar to dipole models)
- ~10% or higher degradation at 4.5K
- Flux jumps in models made of high-Jc RRP strands

Field Quality

- * 6 HFDA models vs. first 6 40-mm SSC dipole models
- * 4 Nb3Sn TQ (TQC and TQS) models vs. NbTi HGQ models.
- Field harmonics are still larger in Nb3Sn models <= new technology</p>
- The geometry and alignment of Nb3Sn magnets need to be improved

Coil Magnetization Effects

50

40

30

20

10

0 -10

-20

-30

-40

0

0.5

b₃, 10⁻⁴

Measured nocorr

Calc_nocorr Measured_corr

Calc corr

3

3.5

2.5

2

B. T

1.5

- * The persistent current effect is large but reproducible
- flux jumps in low order
 harmonics in dipole models
 => smaller Deff
- Passive correction to reduce the persistent current effect
- Large variations of the eddy current components

AP1 Seminar, March 15, 2008 NOSSN Accelerator Magnet R&D and LHC Luminosity Upgrades A. Zlobin 14

Coil production:

- o 20 dipole and 29 quadrupole 1-m long coils
 - Good size reproducibility
 - Short fabrication time (comparable with NbTi technology)

Robust mechanical structures

Handling and testing:

- 6 dipole models, 6 dipole mirror models, and 9 LARP TQ models based on different mechanical structures
- o Multiple reassembly without degradation
- **o** Coil and magnet transportation across the country
- The possibilities and present limitations of accelerator field quality in Nb₃Sn dipoles and quadrupoles were demonstrated
- Issues => quite long training, degradation, reproducibility
- Solution => improve or provide larger margin (10%degradation+20%training)

- Nb3Sn accelerator magnet technology scale up was successfully started
- * Goals:
 - Long Nb3Sn coil winding, curing, reaction, impregnation, handling, magnet assembly and testing procedures
 - **o** Infrastructure for LARP and future LHC upgrade project
 - o Long coil performance
- Stages:
 - o 2-m long cos-theta coil (Fermilab, June 2007)
 - o 4-m long racetrack coils (BNL/LBNL, July 2007-February 2008).
 - o 4-m long cos-theta coil (Fermilab, December-January 2008)

Next step:

LARP 4-m long quadrupoles of TQ series (BNL/FNAL/LBNL, 2009).

Quench number

1-m and 2-m long PIT mirror models reached their SSL o identical quench performance typical for Nb3Sn magnets

APT Seminar, March 13, 2008

*** 4-m long RRP mirror:**

- **o** Flux jump instabilities at I~16kA (comp. with ~21kA in short mirror)
- o Imax~90% of SSL at 4.5 K (97% in short mirror)
 - training was not finished
- * 4-m long RRP racetrack (BNL):
 - Imax~96% of SSL at 4.5 K <= simpler mechanics, low coil pre-stress
 - Flux jumps caused few low-current quenches

- All coils survived the quite complicate fabrication process and assembly with long mechanical structures
- Possibilities and present limitations of the long coil quench performance were demonstrated
- * Issues
 - long training, some degradation similar to short models =>
 Flux jump limitations
- Solution
 - improve or provide larger margin (10% degradation + 20% training)
- The optimization and use of more stable high-Jc RRP strand is critical for magnet performance improvement.
- ***** Next steps:
 - o Field quality and alignment
 - o Long term performance

APT Seminar, March 13, 2008

Nb3Sn Accelerator Magnet R&D and LHC Luminosity UpgradesA. Zlobin20

***Baseline LHC inner triplets:**

- o Lnom=10³⁴ cm⁻² s⁻¹
- ο **β***=**0.5 m**
- o 70 mm NbTi IR quadrupoles
- o 205 T/m nominal gradient with 20% margin
- o 1.9 K operating temperature
- O Limitations: aperture, operation margin, lifetime

*Phase I (~2012-2013):

o L~2.5×10³⁴ cm⁻² s⁻¹

- *Phase II (TBD, ~2018?):
 - o L~10×10³⁴ cm⁻² s⁻¹

<u>Phase II</u>

♦ Phase II: L~10×10³⁴ cm⁻² s⁻¹

- o Stronger focusing
- o Higher beam intensity
- $_{\rm O}$ Crab cavities or DO to reduce effect of crossing angle
- =>Large aperture strong Nb₃Sn quadrupoles

*** LARP studies (2002-2006):**

- 0 100-mm quads with a tungsten liner are compatible with $\beta^* \sim 0.25$ m and L $\sim 10 \times 10^{34}$ cm⁻² s⁻¹
 - T. Sen, N. Mokhov et al.
- o coil bore limit for Nb3Sn quadrupoles for Gnom=205 T/m
 + 20% margin is 110 mm
 - V. Kashikhin, A. Zlobin et al.
- 0 110 mm quadrupoles may be sufficient to achieve Phase II goals (to be confirmed)
- Studies will continue by JIRS group

<u>Phase I</u>

✤ Phase I (~2012-2013): L~2.5×10³⁴ cm⁻² s⁻¹

- o Stronger focusing ($\beta^*=0.25 \text{ m}$)
- **o** Reduce some limitations on intensity due to collimators
- Large aperture Nb-Ti quadrupoles with available LHC cable.

* Two preferable optics:

o Lowbetamax (LBM) and Symmetric

	R.	de Maria,	J-P.	Koutchouck,	E.	Todesco	et al.
--	----	-----------	------	-------------	----	---------	--------

	Lowbetamax			Symmetric			
	Q1	Q2	Q3	Q1	Q2	Q3	
Aperture, mm	90	1.	30	130			
Magnetic length, m	7.4	17.1	9.8	9.2	15.6	9.2	
Nominal gradient, T/m	168	122		122			
Margin, %	20						
Nominal current, kA	12.5						
Field quality at Gnom, 10 ⁻⁴	<1						

Nb3Sn magnets: slot and operation current compatibility Larger aperture => more complicate magnet => larger risk => ...

- **TQ:** insufficient margin, difficulties with quench protection
- * 130-mm options: complicate magnets with limited technical benefits for LHC performance
- * IRQ-90 with 15 mm cable: Q1 option for Phase I with LBM optics
 - o A. Zlobin et al., EPAC'2002, ASC'2002
- IRQ-110 options: Q1 or Q3 in Phase I with both LBM or Symmetric optics, consistent with Phase II magnet parameters

	TQC-90	IRQ-90	IRQ-110	IRQ-130	HQ-130	
Strand OD, mm	0.7				0.8	
Coil ID, mm	90	90	110	130	134	
Bare cable width, mm	10					
Strand Jc(12T, 4.2K), kA/mm ²	2.5					
Bmax(1.9K), T	12.9	13.8	14.4	14.5	14.5	
Gmax(1.9K), T/m	248	268	229	193	190	
Gnom(12.5kA)	208	186	180	156	136	
W(12.5kA), kJ/m	358	384	674	923	702	
Fx (12.5kA), kN/m	1.13	1.23	1.98	2.40	2	
Fy (12.5kA), kN/m	-1.65	-1.54	-2.38	-2.90	-2.3	
Gmax/Gnom	1.19	1.44	1.28	1.24	1.43	
Jcu, A/mm ²	2407	1546	1585	1585	1345	

APT Seminar, March 13, 2008

Nb3Sn Accelerator Magnet R&D and LHC Luminosity Upgrades A. Zlobin

LBM 90 Beam Envelope & Magnet Apertures

Magnet apertures includes the beam pipe, He channel, and beam screen $2^*(3 + 4.5 + 1)$ mm.

The 9sigma beam envelope includes a 10% increase in the beam size and beam separation, plus a 2*8.6mm orbit error correction.

Optimized LBM optics (J. Johnstone, 2008): ✤ Q1=90 mm NbTi: **♦ G=167.21 T/m** ✤ L=7.025 m Nb3Sn: ✤ G=186 T/m **♦** L=6.315 m * Shorter Q1 is shifted towards IP => space for additional absorber

LBM 9σ Beam Envelope & Magnet Apertures

Magnet apertures includes the beam pipe, He channel, and beam screen 2*(3 + 4.5 + 1)mm.

The 9sigma beam envelope includes a 10% increase in the beam size and beam separation, plus a 2*8.6mm orbit error correction.

 Optimized LBM
 optics (J. Johnstone, 2008):

NbTi:

- ✤ ID=130 mm
- **♦ G=121.37 T/m**
- **♦ L=8.711 m**

Nb3Sn:

- ✤ ID=110 mm
- **♦ G=176.21 T/m**
- **♦ L=3 m**
 - 2 modules
 separated by 1.8 m
 in the same slot.


```
o 130 mm, ~130 T/m , ~9.5 m (2 modules)
```

*** Q1:**

o 90-110 mm, ~180 T/m, ~8 m (2 modules)

Operation margin studies (N. Mokhov et al.)

- o 90-mm NbTi Q1 + 130-mm NbTi Q2 and 110-mm Nb3Sn Q3.
- $_{\rm O}~$ 90-mm Nb3Sn Q1 + 130-mm NbTi Q2 and 130-mm NbTi Q3.
- o Symmetric option with Nb3Sn Q1

Tracking studies (G. Robert-Demilaize et al.)

o Effect of field quality

* Nb3Sn accelerator magnet R&D has made a good progress

- o robust coil W&R technology
- o robust mechanical structures
- The possibilities and present limitations of quench performance and accelerator field quality in Nb₃Sn dipoles and quadrupoles were demonstrated
 - o performance improvement is possible
 - o model magnet R&D need to continue
- * The first results of Nb3Sn accelerator magnet technology scale up are quite encouraging
 - o more work ahead
- The optimization and use of more stable high-Jc RRP strand is critical for magnet performance improvement

The ultimate goal of this program is LHC Phase II upgrade (LARP QB quadrupoles)

- Nb3Sn magnet parameters and performance need to be better understood and improved
 - 6-8 years for R&D
- Nb3Sn magnets (LARP QA quadrupoles) could be also considered for Phase I upgrade to improve LHC performance and also to learn more and demonstrate Nb3Sn technology in a real machine
 - o Limited number (Q1 or Q3)
 - Conservative design and parameters large margins (~30-40% to compensate for present performance limitations)
 - o Improve the magnet performance during next 2-3 years
- Staged LHC upgrade strategy adopted by CERN needs to be taken into account choosing QA and QB design parameters.

Acknowledgement

***** US-LARP Magnet groups at BNL, FNAL and LBNL

- US-LARP JIRS group
- *** CERN LIUWG**