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The Muon Collaboration needs better linacs.
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We are developing a model that can study all aspects of breakdown. (the first?)
Using Atomic Layer Deposition we might be able to completely control the surface.

So:

- Why do rf structures fail?

- How well can we control the surface?
- What are the ultimate limits?
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RF breakdown: x ray pulses
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What is happening?

- X ray data show how energy leaves the cavity.
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At the MTA our 805 MHZz pillbox has:
- Stored Energy ~1J

- Electron energy ~ 4 MeV

- Electron current ~ 4 A



What starts the process?

/ E
Ionization

Fracture

Average fields in the cavity are 30 - 50 MV/m = Eqf

X rays show small asperities have much larger fields, Ejocaqt ~ 7 GV/m.

We assume an enhancement factor = Eoca / Esurs

At 7 GV/m tensile stress is comparable to copper's tensile strength.



We can measure the local field at the emitter, with x rays.
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OOPIC Pro modeling

The geometry
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The overall model of the plasma discharge

- Fragments trigger the spark.

- These fragments are broken apart and ionized by electron collisions.
* Plasma electrons accelerate to the far wall.

+ lots of other stuff FPracments
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Typical results
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Factors that drive the discharge

- Immediately following the formation of the plasma, the surface field increases by
a huge factor producing
more tensile stress
more field emission
more ion current to the wall

Factors that limit the discharge

- Space Charge Limit
This still exists and causes the electrons to belch out of the asperity.

- Electron kinematics
Most of the energy may go to the far wall. Electron dynamics limit how energy
can be moved from EM to heat
Secondary emission etc
Low energy electrons

* Metal Injection
Huge forces and power levels exist, but material motion constrains things.



We are adding many details into the model.

* Field emission is not so simple
The work function varies widely across the emitter
The space charge limit has been carefully measured for our emitters -
and these measurements seem to contradict all modern data.

» Coulomb explosions
More data (not really needed) in support of the fracture model

* OOPIC modeling of plasma formation
Description of ionization process
Description of the surface electric field
Description of fluxes of UV, ions, electrons, metallic fluids and fragments

* Breakdown Energy and Mass flow.
Many Mechanisms exist

+ Field Ion evaporation

+ Breakdown data from Lab G and the MTA



Field emission is more than an equation.
- This process has been studied for almost 120 years.
- Simple application of the eqn. isn't always useful.

current vs. field emission of electrons
Barbour et. al. '53
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» Small changes in surface materials
make major changes in current yields.

I'1¢. 4. Emission patterns at various currents, with constant work function ¢=3.19,

° Space Charge depends on geo me"'ry. for emitter (35". lclo;e;i;nding to curve 2, Fig. 7.



Fracture, Creep and Tensile stress
- Fatigue failure seems to explain how breakdown can occur after many cycles.

* Creep seems Yo explain fatigue at the atomic scale.
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* There is a lack of data on creep and fatigue in the GHz range.



Field induced fracture is comparatively well understood.

- It is seen experimentally and modeled
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Unipolar Arcs

- Unipolar arcs were first seen (?) in tokamaks when tiny "weld beads" were found
spiraling around the inner walls of these structures.

- They are driven by the sheath potential at the edge of a stable plasma.

- In tokamaks they are moved around by the electric and magnetic fields, producing
their characteristic tracks.
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- The breakdown arcs we see are similar in some respects to unipolar arcs,
however breakdown arcs are:

violently bipolar,
growing exponentially with ~ns scale time constants



Coulomb Explosions seem to be important.

- Coulomb effects in small clusters can break them apart (Rayleigh, 1882).
Ne/NI =1 +- 6,
d ~ 0.01 can give surface fields of 10 GV/m.

- Clusters are energetically unstable when x = Ecouiomb/ 2 Esurface > 1,

o SGETT)

BARRIER (in units of E,)




Coulomb explosions are being modeled.
- They break up fragments above the field emitter.
- They may be seen as the cause of the initial fracture.

- This mechanism is seen experimentally and being modeled
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FIG. 3. Kinetic energy distributions for the different Na ions

after excitation of Nagy* with a laser of frequency w=2.5 eV, in-
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Many mechanisms are active.

» No one understands this environment.

Plasma

- Even liquid drops are accelerated.

L\

* Molecular Dynamics codes are able to model it.



Time development of a discharge
- The initial few ns have been modeled in detail in OOPIC Pro.
- The end of the breakdown event can be measured in a cavity.

- The whole discharge can be modeled and is experimentally accessible.
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Breakdown events damage the surface
- More energy => more damage

- More damage => Higher enhancement factors => Lower operating fields

A Surface More stored energy produces
Damage higher enhancement factors.
s,(B, U)

Enhancement Factor, [3



Pulsed heating can also damage cavities.

* A paper by Pritzkau and Siemann in 2002 argued that surface currents will cause
heat fluctuations which will cause compressional fatigue and eventually cavity
failure.

 Tantawi and Dolgashev produce damage from skin currents.
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« But do cavities see this effect?



Many mechanisms limit gradients.

Normal Conducting
Electric fields tearing the surface apart
Skin currents heat the equator of cavities

Superconducting
Classical
Heating by field emission currents
Breakdown - High pulsed power conditioning
Multipactor - cured by cavity shape and surface treatment
Lorentz detuning -- electrostatic stresses approach 1 atm
Microphonics - He bubbling distorts cavity
Local heating - surface defects increase local resistivity
Quantum
Quench Fields - Bmax~0.2 T
Q slope - Losses increase nonlinearly with field
Operational
Particulates - assembly brings contaminants
Power use - somebody has to pay
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All these processes are dependent on the nature of the surface.
* There are a number of ways of improving the surfacees.

» Electropolishing copper has been shown to be useful,

* Ultra polishing with abrasives is also promising.

* Clean rooms and other SCRF technology is appropriate..



Atomic Layer Deposition may be useful.

B YOl & ') s O

D]
o & f;:?: & & %%&

Al o ! & 2 SO ]
85852
-GN p Y Al =
= Q o @ gg‘;‘

S

£ g& e g

Trimethylaluminum gas

2 2 %) & €9 ot o
-z ‘ho Wy
) = & =$ @ & &9
— - TN T .30
®D . & & &z fater vapor i &
Oz & @ Nitrogen purge g’) € o)
- ' gen purg 2 @

3+ =
<
Quartz 2 2L | e Growth Occurs
Crystal % in Discrete
Microbalance a1l _ Steps
o)
< o [1mo [1 M i
™A I |
1 1 1 1




Atomic Layer Deposition (ALD)
+ Atomic Layer by Layer Synthesis: a method similar o MOCVD

* Used Industrially
Semiconductor Manufacture for “high K" gate dielectrics
"Abrupt” oxide layer interfaces
Pinhole free at 1 nm film thicknesses
Conformal, flat films with precise thickness control

* Electroluminescent displays
No line of sight requirement
Large area parallel deposition
Large Surface area, high electric field applications

* Parallel film growth technique, (insides of large tubes).



ALD produces conformal coatings.

* Mike Pellin & Jeff Elam (ANL/MSD) can conformally coat surfaces with
monolayers of many materials. (Elam, Libera, Pellin, Zinovev, Greene, Nolan, A. P. L. 89, 053124 (2006))

- insides of tubes tungsten on aerogels

8 8 8 8 8

W La X-ray Intensity (Counts)
3

o

0 10 20 30 40 50 60 70
Distance (Microns)

FIG. 1. Plan view (a) and cross-sectional (b) SEM images of anodic alumi-
num oxide membrane following ten cycles of W ALD. The white arrow . .
indicates W nanocrystal. W EDAX line scan (c) taken from the middle of FIG. 4. TEM images of carbon aerogel following three (a) and seven (b)

the cleaved membrane along the white line in (b). cycles of W ALD.



Enhancement spectra for “flat” surfaces.

- We assume that the density of emitters looks like Ae .

+ A wide variety of data is consistent with this parameterization,

1000 | T S S
<

= 100 e Cornel

' m Geneva
= : . ¢ Nilsson
> > O MUCOOL
y— 10 0 Mueller 1
v . 2 Mueller 2
6 Mueller 3
=]
3!
s %o ’
G
s 0.1
D © o

s ' 1 L 1 1 I ' L L A A L 1 L A 1 ' s L

, s Lol
0 200 400 600 800 1000 1200
Enhancement Factor, 5




Enhancement factors (from Feynman).

611 High-voltage breakdown

We would like now to discuss gualitatively some of the characteristics of the
7elds around conductors. If we charge @ conductor that is not a sphere, but one
that has on it a point or a very sharp end, as, for example, the object sketched
« Fig. 6-14, the ficld around the point is much higher than the ficld in the other
c2zions. The reason is, qualitatively, that charges try to spread out as much as
~ossible on the surface of a conductor, and the tip of a sharp point is as far away
«5 it is possible to be from maost of the surface. Some of the charges on the plate
2t pushed all the way to the tip. A relatively small amouns of charge on the tip
=20 still provide a large surface density; a high charge density means a high field
a5t outside.

One way to see that the field s highest at those places on a conductor where
the radius of curvature is smallest is to consider the combination of & big sphere
=nd a little sphere connected by a wire, as shown in Fig. 6-15, It is a somewhat
sealized version of the conductor of Fig. 6-14. The wire will have little influence

o the fields outside; it is there to keep the spheres at the same potential, Now,
which ball has the biggest field at its surface? If the ball on the left has the radius
: and carrics a charge Q, its potential is about

| o

L 41\'6{; ;

Fig. é-14. The eleckric field near a
$ sharp peint on a conducter is very high.
0F course the preseace of one ball changes the charge distribution on the other,
o that the charges are not really spherically symmetric on either, But if we are
nerested only in an estimate of the ficlds, we can use the potential of a spherical
chargze.) If the smaller ball, whose radius is b, carries the charge g, its potential
= zbout

__1 gq
1= b
Bu:dn - @3, S0
e &
a b

On the other hand, the feld at the surface (see Eqg. 5.8) is proportional to the
surface charge density, which is like the total charge over the radius squared.
We get that
E\ o Q,-"'a? b
E " ¢f " a

(6.35)

Fig. 6-15. The field of a pointed
Therefore the field is higher at the surface of the small sphere. The ficlds are inthe  object can be approximated by that of

mverse proportion of the radii. two spheres of the some potential.
This result is technically very important, because air will break down if the

slectric field is too great, What happens is that a loose charge (electron, or ion)

somewhere in the air is accelerated by the field, and if the ficld is very great, the

sarge can nick nnenongh sneed before it hits another atom to be able to knock an
electron off that atom. As a result, more and more ions are produced. Their E - E /3 ~ 1 / r
motion constitutes a discharge, or spark. If you want to charge an object to a local = Csurf
high potential and not have it discharge itself by sparks in the air, you must be
sure that the surface is smooth, so that there is no place where the field is ab-

normally larse,



Smooth coatings can change the spectrum of enhancements.

* What is the effect of a ~100 nm conducting coating?
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* This example should give_three times higher rf gradients.



ALD coatings should cure field emission and breakdown.

+ ~100 nm smooth coatings should eliminate breakdown sites in NCRF.

Uncoated Si AFM tip After 5nm ALD ZrO,
+30nm ALD Pt
Figure 3: Scanning Electron Microscope images of nearly
atomically-sharp tips, before and after coating with a total of
35nm of material by ALD. The tip, initially about 4 nm, has
been rounded to 35nm radius of curvature by growth of an ALD

film. Rough surfaces are inherently smoothed by the process of
conformal coating.

- Copper, however, is a hard material to deposit, and it may be necessary to study
other materials and alloys. Some R&D is required.

- The concept couldn't be simpler. Should work at all frequencies, can be in-situ.



Surface layers can address cure pulsed heating in NCRF.

* You can build a composite material with higher specific heat.

Skin currents

- Less thermal excursion
Less fatigue

Longer lifetime
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We have a new model of losses in SCRF systems.

* Q-Slope is an anomalous loss that appears
at high gradients in SCRF systems.
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We have discovered magnetic oxides (bad) on niobium surfaces.

- John Zasadzinski and Thomas Proslier of IIT believe that their point contact
tunneling measurements clearly show that these magnetic oxides can break up
Cooper pairs and explain high field Q-Slope.

- APL paper accepted 2 days ago. s

- Strange oxides are involved.
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Alex Gurevich has a cure for quench fields.

The primary niobium layer is covered with an insulator and superconductor.

The top layer has high T, screens quench fields from the bulk niobium.

Multiple layers permit almost arbitrarily large accelerating fields.

H, = 150mT

d

H, = 324mT

‘_

would give Eq.c ~ 100 MV/m

(A. Gurevich, A. P. L. 88. 012511 (2006))

H, = 50mT

d

H, = 2T

d~30-50nm

Eace ~ 550 MV/m



Why layered superconductors can have higher quench fields.

% Vortices in superconductors move in AC fields. Very weak
= rf losses. dissipation

21

% Nb can reach the highest field without vortices. [ | Strong vortex
= Use as bulk material.

% Vortices aren't stable in thin layers. _
= Use layers to "screen” fields from bulk. 0 H, H

BULK  LAYERS

% This is a hard geometry to construct.
Nb is "bulk” material, i.e. 200 nm.
Layers should be ~(10 - 30) nm
Nanometer precision required for layers
No shorts or voids in insulators.
ALD can do it.

A. Gurevich. Appl. Phy. Let. 88 012511, (2006)




Controlling the chemistry.

- SC properties measured by
Point Contact Tunneling
Measures Cooper binding energy
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We coated a SCRF single cell cavity.




And improved it.
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Other efforts are underway.
Muons Inc has an effort they are starting.
* Bob Palmer is looking at magnetic insulation.
» CERN has an active experimental and modeling program.

 There is a High Gradient Collaboration lead by SLAC.



Conclusion - things are converging
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