Computer Code Development for Reconstruction

of the TEVATRON Coupled Optics using TBT Data

Yuri Alexahin, Eliana Gianfelice-Wendt, Fermi National Accelerator Laboratory

Valery Kapin, Moscow Engineering Physics Institute, Russia

FERMILAB, BATAVIA, IL

March, 2008

1. Introduction

Turn-by-turn (TBT) beam-position monitor (BPM) data provide immediate information on the
coupled optics functions at BPM locations. In the case of small deviations from the known (design)
uncoupled optics some cognizance of the sources of perturbation, BPM calibration errors and tilts
can also be inferred without detailed lattice modeling. In practical situations, however, fitting the
lattice model with the help of some optics code would lead to more reliable results.

In [1,2], an algorithm for coupled optics reconstruction from TBT data on the basis of MAD-X
code [3] and examples of its application for the Fermilab TEVATRON accelerator were presented.

Although this algorithm is potentially a powerful tool, the fitting procedure for a machine as large as

6-Aug-08 Page 1 of 27

TEVATRON is too slow for a console applications. One step of full optics reconstruction which
requires fitting over 900 parameters takes more than one hour on a 2GHz PC.

Two possibilities to speed up the calculations have been outlined in Ref.[1]. The first one is a
replacement of the original MAD TEVATRON lattice consisting of 13260 elements by the
equivalent lattice consisting of 236 BPMs, 432 variable quadrupoles and linear sector maps
describing the beam lines between BPMs and quadrupoles. Since the number of elements of the
resulting equivalent lattice is about one thousand, the computation time would be reduced by an
order of magnitude.

Another possibility for significant reduction in the computation time is to divide the matching
process in two parts: 1) fitting of magnetic element strengths, with fixed values of BPM calibration
factors and tilts; 2) adjustment of the calibration factors and tilts, keeping magnetic strengths fixed.
These two steps should be repeated iteratively.

Since the discussed algorithm for coupled optics reconstruction deals with 4D-linear maps only, it
involves relatively easy computations for 4x4 matrices and does not need most of the MAD-X
code tools. Obviously, the discussed algorithm can be implemented in a relatively simple dedicated
computing code, which potentially should perform our specific calculations faster then the more
general MAD-X code.

Initially, the algorithm had been implemented using the Mathematica package [4]. The test runs for
full-scale optics reconstruction with about nine hundred independent variables showed an essential
reduction of computation time to the reasonable level of a few tens of minutes. However, for a

console application computation times of the order of few minutes are desirable.

6-Aug-08 Page 2 of 27

It is known that Mathematica codes can be translated into much faster low-level language,

like FORTRAN or C, codes. We should mention the existence of commercial Mathematica add-on
packages [5] for this purpose. However the final low-level computer code still requires some efforts
for code adaptations. Therefore, we preferred to implement the algorithm realized in Mathematica as

low-level computing code “manually”, as described in this note.

6-Aug-08 Page 3 of 27

General Requirements for the Console Application

Development of the console applications for the Fermilab control room should obey special local
conditions, because source codes are compiled, linked and loaded by MECCA (Management
Environment for Controls Console Applications) [6]. MECCA, for instance, does not allow user to
submit own options for compiler or linker as it can be done during a usual code development. All
new applications must be written using C/C++ computer language under LINUX operating system.
However, our algorithm potentially may include many different numerical methods for function
minimizations, eigen-value calculations and so on. Historically, most numerical tools are available
in the form of FORTRAN libraries. By using a concept of mixed-language programming, we can

exploit such FORTRAN libraries.

One of the possible ways to realize it under MECCA is to use automatic Fortran-to-C (usually
abbreviated as “f2¢”) convertor [7]. Unfortunately, f2c accepts only FORTRAN-77 standard written
codes, excluding the possibility of using a modern and more powerful FORTRAN-90/95.

Although f2¢’s output reasonably readable, it provides a lot of nasty looking code fragments,
especially for input/output statements. It is emphasized by the f2¢’s authors [7], that it would be a
““nightmare" to maintain the output C code of f2¢, and that it would be much more sensible to
maintain the original FORTRAN, translating it anew each time it changes.

There are several inter-language conventions used by f2c. In order to make easy the interfacing, we

observed some restrictions in writing the FORTRAN-77 code. First, all FORTRAN major routines

6-Aug-08 Page 4 of 27

which can be called by C-code are implemented as parameterless SUBROUTINESs. Second, all
variables are transferred in/out these subroutines using named COMMON blocks, which f2c turns

into C structures. For example, the FORTRAN declarations (on the left) result in C structures (on

the right):

common /named/ ¢, d, r, i, m struct {

complex c(10) complex c[10];
double precision d(10) doublereal d[10];
real r(10) real r[10];

integer 1(10) integer 1i[101];
logical m(10) logical m[10];

} named_;

#define named_1 named_

The Files and Routines of the Fortran Code.

The Fortran code follows as close as possible the logical structure of the Mathematica code. The
source code consists of 5 files: main.f, math_lib.f, penfunQ.f, read_data_files.f, tbt_matching.f.
Tables 1-5 list the routines contained in each file and explain their task. Table 1 describes the
content of the main.f file and its single MAIN-program which actually outlines major steps of the
algorithm. Table 2 describes the content of the penfunQ.f file, which includes routines performing
major TBT-matching steps, and routines necessary for the objective (or penalty) function

calculation. Routines reading all the data files are collected in the file read_data_files.f (Table 3).

6-Aug-08 Page 5 of 27

File tbt_matching.f (Table 4) contains the service routines for data sorting and manipulation before

they are used in the major algorithm steps. Table 5 explains the content of the file math_lib.f, which

collects subroutines realizing general numerical algorithms.

6-Aug-08 Page 6 of 27

Table 1. File main.f: Tasks and routines.

Routine name

Task description

File contains only MAIN program,

which after f2c conversion can serve as prototype of an interfaces of to the C code

MAIN

Contains:
1) COMMON blocks of a global variables to be transferred between C and
f2c (Fortran) parts;
2) DATA statements which initialize some of the initial variables described in
COMMON blocks
3) Sequence of CALLS to subroutines each of them responses for major steps
of the algorithm:
a) read data files, prepare and save the information in appropriate
variables and arrays:
(CALL Read_data_files_00_01, CALL tbt_matching_02_03,
CALL Read_data_files_04, CALL Some_ini_values_06,
CALL Read_data_files_07_08, Call tbt_matching_09_010,
CALL Set_initial_quads_gradients_011a)
b) performing minimization according to the 4 major tasks (steps) as
described in Mathematica notebook
(CALL find_minimum_stepl, CALL find_minimum_step2,
CALL find_minimum_step3, CALL find_minimum_step4
c) the optimal gradient values found step3 are saved by

CALL Save_quads_gradients_of_step3

6-Aug-08 Page 7 of 27

Table 2. File penfunQ.f: Tasks and routines.

Routine name

| Task description

Contains routines performing major TBT-matching steps, and routines necessary for the objective (or penalty) function

calculations

FIND_MINIMUM_STEP1

adjust tunes and phase advances between IPs (see dedicated Table 7 for details)

FIND_MINIMUM_STEP2

(see dedicated Table 8 for details)

FIND_MINIMUM_STEP3

(see dedicated Table 9 for details)

FIND_MINIMUM_STEP4

(see dedicated Table 10 for details)

INITIALIZE_STEP3

SUBROUTINE initialize_step3(x)
Service subroutine to manage the working mode (X=>OUT or X=>IN) for
subroutine Variable_LB_quads_step3:

1) ini_step3=.TRUE.CALL

2) CALL Variable_LB_quads_step3(x) (see table 4)

3) ini_step3=.FALSE.

INITIALIZE_QUADS_STEP4

SUBROUTINE INITIALIZE_QUADS_STEP4(x)
Service subroutine to manage the working mode (X=>OUT or X=>IN) for
subroutine Variable_all_quads_step4:

1) ini_step4=.TRUE.

2) CALL Variable_all_quads_step4(x) (see table 4)

3) ini_step4=.FALSE.

INITIALIZE_BPMS_STEP4

SUBROUTINE INITIALIZE_BPMS_STEP4 (Y)
Service subroutine to manage the working mode (Y=>OUT or Y=>IN) for
subroutine Variable_ BPM_coeffs_step4:

1) ini_bpm_step4=.TRUE.

2) CALL Variable_BPM_coeffs_step4(y)

3) ini_bpm_step4=FALSE.

FUNC_VK

The service subroutine for objective function. It then call appropriate (for given
step “step_no’’) subroutine for objective function calculations.
SUBROUTINE FUNC_vk(x, penfunQ, FE):

1) CALL penfunQ_stepl(x, penfunQ)

2) CALL penfunQ_step2(x, penfunQ)

3) CALL penfunQ_step3(x, penfunQ)

4) CALL penfunQ_step3(x, penfunQ) (the same at step 3)

6-Aug-08 Page 8 of 27

Routine name

Task description

PENF_BPM_ST4

subroutine for the (“BPM”) objective function:
SUBROUTINE penf_bpm_st4(y, penfst4, FE)
REAL y(*), FE ! INTENT(IN) vars & error for f(x).
REAL penfst4 ! INTENT(OUT)

CALL Variable_BPM_coeffs_step4(y)

CALL constraint_vector_05 ! build constraints

PENFUNQ_STEP1

Objective function for stepl
SUBROUTINE penfunQ_stepl (x, penfunQ):
X (INOUT) — variable values;

penfunQ (OUT)- objective function value

PENFUNQ_STEP2

Objective function for step2
SUBROUTINE penfunQ_stepl (x, penfunQ):
X (INOUT) - variable values;

penfunQ (OUT)- objective function value

TRACK_EIGENVECTORS_

AT_BPMS_STEP2

SUBROUTINE track_eigenvectors_at_bpms_step2

Eigenvectors come via COMMON /one_turn_param/

Call read_iel_TMtot_matrix(iel, TMat_iel) ! TMat_iel (details in Table 4)

(OUT) values in arrays like V11H(200) via COMMON /OPT_Vnm/

PENFUNQ_STEP3

Objective function for step2
SUBROUTINE penfunQ_stepl (x, penfunQ):
X (INOUT) — variable values;

penfunQ (OUT)- objective function value

ONE_TURN_PARAMETERS

SUBROUTINE One_turn_parameters:

CALL Full_turn_transfer_matrix (details in Table 4)

CALL read_iel_TMtot_matrix(nelm, TMat_turn) (details in Table 4)

CALL AEG1R(4,TMat_turn,EVR,EVI,V,IRAB1,IERR)

! find eigens (see table 5)

Call FORM_EIGENS_FROM_AEGIR(EVR,EVL V,IERR, re_val, im_val,

re_vec, im_vec) ! extract and adjust results of AEGIR to convenient form

Table 3. File read_data_files.f : Tasks and routines.

Routine name

Task description

Subroutines reading the data files

READ_DATA_FILES_00_01

Call Read_BPM_names (Read files “HBPM_names.txt”; “VBPM_names.txt”)

Call Read_Sector_maps ()

6-Aug-08 Page 9 of 27

Routine name

Task description

READ_DATA_FILES_04

Call Read_tbt_eigenvectors_04

READ_SECTOR_MAPS

read sector maps in files “tev_SM.txt”

READ_BPM_NAMES

Read files “HBPM_names.txt”; “VBPM_names.txt”

READ_TBT_EIGENVECTORS_04

Simply call the next four subroutines

READ_VIIHT_VI12HT

read “TBT_datal_HBPMs.txt”

READ_VI3HT VI4HT

read “TBT_data2_HBPMs.txt”

READ_V31VT_V32VT

read “TBT_datal _VBPMs.txt”

READ_V33VT_V34VT

read “TBT_data2 VBPMs.txt”

READ_DATA_FILES_07_08

CALL Read_BPM_Calibr_factors, CALL Read_BPM_Tilts, CALL

Read_ini_quadr_gradient_errors

READ_BPM_CALIBR_FACTORS

Read initial values in files “BPM_clbr.ini”

READ_BPM_TILTS

READ_INI_QUADR _

GRADIENT_ERRORS

Read initial values in files “BPM_tilt.ini”

Read initial values in files “norm_quad_grads.txt”, “skew_quad_grads.txt”

6-Aug-08

Page 10 of 27

Table 4. File tbt_matching.f Tasks and routines.

6-Aug-08 Page 11 of 27

Routine name

Task description

File contains the service routines for some data sorting and manipulations to prepare them for a future use in the major

algorithm steps.

TBT_MATCHING_02_03

Call BPM_renaming_positioning_02;

Call BPM_exclude_and_numbering_03

BPM_RENAMING_POSITIONING_02

BPM renaming, positioning and assigning ifBPM-flags

BPM_EXCLUDE_AND_NUMBERING_03

BPMs are excluded from list of constraints saccording to the given

samples hpexcl, vpexcl

CONSTRAINT_VECTOR_05

Calculate pieces of the objective function

They saved in

COMMON /constaint_vector/ n_consnorm, n_consvec,
normonly, skewonly, consvecs (8%200),

consnorm(4*200), consskew(4*200)

(IN) Parameters are transferred via common blocks:

common /CostraintsBPMs/; (BPM names and numbers)
COMMON /TBT_Vnm/; (TBT eigenvectors at BPMs)
COMMON /OPT_Vnm/; (Eigenvectors Calculated from optics)
COMMON /BPM_calibr_tilts/ (BPM calibration abd tilts angles)

COMMON /ini_beam_kick/ ax, ay, psix0, psiy0

SOME_INI_VALUES_06

Calculate tangents of initial phase advances

TBT_MATCHING_09_010

CALL tbt_matching_09

TBT_MATCHING_09

Defines quad positions in the list of elements

CHAR_CAPITAL_TO_SMALL

Service subroutine converting the capital characters in the 5-chars

pattern to the small characters

TMQ_ARRAY_010

SUBROUTINE TMQ_array_010(iel)

Calulates Quad transfer matrices according to Mathematica-nb
paragrapgh 0.10.:

INTEGER iel | INTENT(IN)

DOUBLE PRECISION TMQ ! INTENT (OUT)

! Array of transfer matrices for Quads (and fiction SOLs)
saved in COMMON /TMQ_array/ TMQ(4,4,500)

The last index - is the ordinal number of quadrupole in "name"

SET_INITIAL_QUADS_GRADIENTS_O11A

Simply assign initial gradients (grnmO and grskO) to gradients of

all quadrupoles kept in arrays gradnm & grask

SAVE_QUADS_GRADIENTS_OF_STEP3

the optimal gradient values found step3 are saved by
nmgrads3(i_muls)=gradnm(i_muls)

skgrads3(i_muls)=gradsk(i_muls)

GROUPING_QUADS_INTO_CIRCUITS_011

S%I?K%Lg]_’lagm G1rouping_quads_into_circuits_O1]5(2)1(2%e 12 of 27

Table 5. File math_lib.f Tasks and routines.

Routine name

| Task description

File contains subroutines realizing general numerical algorithms

AEGIR

! find eigen values and vectors.

Example: CALL AEGIR(4,TMat_turn,EVR,EVL,V,IRAB1,IERR)
! N=4 !(IN) dimension

! REAL TMat_turn(4,4) ! INOUT) is changed inside (I do not use it)
! REAL EVR(4) ! (OUT) for real part of egenvalues

! REAL EVI(4) ! (OUT) for imagine part of egenvalues
'REAL V(4,4) ! (OUT) for two eigenvectors with EVI(j)>0

! !'1 & 2 column for Re & Im of the first eigenvector
! !' 3 & 4 column for Re & Im of the third eigenvector
! ! the second and fourth eigenvectors are conjugates.
! Integer IRAB1(4,4) ! (OUT) some servce info

! Integer IERR ! (OUT) error message, (0=>0K)

CARG

REAL FUNCTION CARG(Z)
COMPLEX Z (IN)

Computes the argument CARG of a complex number Z.

MNBI1R

the programm for uncoditional minimization - Rosenbrock method (works only at step 1
and 2):

SUBROUTINE MNB1R

(N, X,F,EPS, MAXK,MKAT MCYC,NSTEP,EPSY,FUN,IERR)

Parameters:

N (IN) dimensions

X (INOUT) vector of size N : at input - initial point, at output - the result

F (OUT) the calculated function value

EPS (IN) vector (N) of initial steps

MAXK (INOUT) at input - limit for function calculations, at output - number of
performed calculations

MKAT (INOUT) -//- the number of stages

MCYC (IN) limit for the number of cyrcles at a stage

6-Aug-08 Page 13 of 27

Routine name

Task description

NSTEP (IN) =1 (the same initial step at every stage)

EPSY (IN) the precision for function

IERR error flag =0 (OK), =66 (maxk is reached), =67 (mcyc is reached), =68 (mkat is
reached)

FUN subroutine of the target function

AMOEBA

The simpex method from NR-77 (modified to our code)
SUBROUTINE amoeba

(np,mp, X, EPSX, F_out, ftol,ITMAX, funk,IERR).

INTENT (IN):

NP - task dimension, mp=np+1, X(¥) —array of initial variables,

EPSX — kind of initial step for x-=variables, ftol — precision for the function; ITMAX —
maximum number of iterations, funk — name of subroutine for the objective function

calculations

INTENT(OUT):
X(*) —array of final variables, F_out — optimized function value,

ITMAX — number performed iterations, IERR — flag (if =0, then OK).

Example: CALL amoeba(n,npl, X, x_ini_stepl, F_out, EPSF_stl,

ITMAXstl, FUNC_vk,IERR)

AMOEBAI

Part of the above AMOEBA

AMOTRY

Part of the above AMOEBA

MATRIX_4X4 MULT

Line-by line 4-by-4 matrix multiplication:

DOUBLE PRECISION A(4,4), B(4,4) C(4,4) => (IN, IN, OUT) => C=AxB

MATRIX_4X4_EQUAL

! matrices B=A
SUBROUTINE matrix_4x4_equal(A, B) ! matrices B=A

DOUBLE PRECISION A(4,4), B(4,4) ! (IN), (OUT)

DET_4X4 Line-by line determinant of 4-by-4 matrix and partial traces
SUBROUTINE DET_4x4(A, DET, TRACEI1, TRACE2)
DOUBLE PRECISION a(4,4) ' IN)
DOUBLE PRECISION DET, TRACEI1, TRACE2 ! (OUT)
GSUIR SUBROUTINE GSUIR(ISEED,N,R) ! Random number generator

For INTEGER (IN) ISEED returns real array of the size(IN) of the random numbers

R(1:N) within the interval [0,1]

6-Aug-08 Page 14 of 27

The Functional Structure of the Fortran Code.

The code can be divided into 5 logical steps: 0-step which read data files and prepare data for the
further usage; and steps 1-4 performing minimization according to the 4 major tasks (steps) as
described in Mathematica notebook. The tables 6-10 explain the functional structures of the every

major step.

Table 6. The O-step: read data files and prepare data for the further usage.

Corresponding Operators in MAIN- Actions inside called subrroutine
program
CALL Read_data_files_00_01 CALL Read_BPM_names:

Read files “HBPM_names.txt”; “VBPM_names.txt”

Call Read_Sector_maps:

read sector maps in files “tev_SM.txt”

call tbt_matching_02_03 Call BPM_renaming_positioning_02:

BPM renaming, positioning and assigning ifBPM-flags.

Call BPM_exclude_and_numbering_03:
BPMs are excluded from list of constraints saccording to the given samples

hpexcl, vpexcl

CALL Read_data_files_04 Call Read_tbt_eigenvectors_04:

1) CALL Read_VI11HT_VI12HT (read “TBT_datal _HBPMs.txt”)
2) CALL Read_V13HT_V14HT (read “TBT_data2_HBPMs.txt”)
3) CALL Read_V31VT_V32VT (read “TBT_datal _VBPMs.txt”)

4) CALL Read_V33VT_V34VT (read “TBT_data2_ VBPMs.txt”)

CALL Some_ini_values_06 Calculate tangents of initial phase advances

6-Aug-08 Page 15 of 27

Corresponding Operators in MAIN-

program

Actions inside called subrroutine

Call Read_data_files_07_08

CALL Read_BPM_Calibr_factors

Read initial values in files “BPM_clbr.ini”

CALL Read_BPM_Tilts

Read initial values in files “BPM_tilt.ini”

Call Read_ini_quadr_gradient_errors

9% ¢

Read initial values in files “norm_quad_grads.txt”, “skew_quad_grads.txt”

Call tbt_matching_09_010

CALL tbt_matching_09 (Defines quad positions in the list of elements)

CALL

Set_initial_quads_gradients_011a

It simply assigns initial gradients (grnm0 and grskO0) to gradients of all

quadrupoles kept in arrays gradnm & grask

Table 7. 1st-step: adjust tunes and phase advances between IPs: CALL find_minimum_step 1

SUBROUTINE find_minimum_step1

COMMON /STEP_data/

Intent (IN), from main’s DATA): step_no, i_method

COMMON /var_names_stepl/

Intent (IN), from main’s DATA): n_vars_stl

COMMON /simplex1_stl/

Intent (IN), from main’s DATA):

ITMAX stl, EPSF stl, x_ini_stepl, X_ini(100)

CALL amoeba CALL amoeba
(n,npl, X, x_ini_stepl, F_out, EPSF_stl, ITMAX_stl, FUNC_vk, IERR)
See parameter description in Table 5

CALL MNBIR CALL MNBIR

(N, X,F_out, EPS MAXK, MKAT,MCYC,NSTEP,EPSY, FUNC_vk,IERR)

See parameter description in Table 5

CALL FUNC_vk

(x, penfunQ, EPSF_st1)

Call the service subroutine for the objective function:

X (INOUT) - variable values; penfunQ (OUT)- objective function value;
EPSF_stl — not used variable.

Here FUNC_vk will call actual objective for the step 1:

CALL penfunQ_step1(x, penfunQ) => see next line !

6-Aug-08

Page 16 of 27

SUBROUTINE find_minimum_step1

CALL penfunQ_step1(x, penfunQ) X (INOUT) - variable values; penfunQ (OUT)- objective function value

CALL Grouping_quads_into_circuits_011(x) (see table 4)

CALL One_turn_parameters (see Table 2)

Call read_iel_TMtot_matrix(CPM_ord_pos(i), TMat_iel)

Table 8. 2nd-step: Correct errors in TBT amplitudes and phases: CALL find_minimum_step2

SUBROUTINE find_minimum_step2

COMMON /STEP_data/ Intent (IN), from main’s DATA): step_no, i_method
COMMON /var_names_step2/ Intent (IN), from main’s DATA): n_vars_st2
COMMON /simplex1_st2/ Intent (IN), from main’s DATA):

ITMAX _st2, EPSF_st2, x_ini_step2, X_ini(100)

CALL amoeba CALL amoeba
(n,npl, X, x_ini_step2, F_out, EPSEF_st2, ITMAX_st2, FUNC_vk, IERR)

See parameter description in Table 5

CALL MNB1R CALL MNB1R
(N, X,F_out, EPS MAXK, MKAT,MCYC,NSTEP,EPSY, FUNC_vk,IERR)

See parameter description in Table 5

CALL FUNC_vk Call the service subroutine for the objective function:

(x, penfunQ, EPSF_st2) X (INOUT) - variable values; penfunQ (OUT)- objective function value;
EPSF_st2 — not used variable.

Here FUNC_vk will call actual objective for the step 2:

CALL penfunQ_step2(x, penfunQ) => see next line !

CALL PENFUNQ_STEP2(x, penfunQ) | X (INOUT) — variable values; penfunQQ (OUT)- objective function value

CALL One_turn_parameters (see Table 2)

CALL track_eigenvectors_at_bpms_step2 (see Table 2)

CALL constraint_vector_05 ! build the constrants

6-Aug-08 Page 17 of 27

Table 9. 3rd-step: adjust low-beta (LB) quads and coupling circuits: CALL find_minimum_step3

SUBROUTINE find_minimum_step3

COMMON /STEP_data/

Intent (IN), from main’s DATA): step_no, i_method

COMMON /var_names_step3/

Integer N_VARS_st3 ! the problem dimension at STEP3 is calculated at the

beginning of this step

COMMON /simplex1_st3/

Intent (IN), from main’s DATA):

ITMAX _st3, EPSF_st3, x_ini_step3, X_ini_step3(100)

In order to “shake” the simple several variables are introduced in this
COMMON:

div_factor_st3, x_ini_step3, rand_step_3, x_ini_step_var3, n_runs_st3,

n_faults_st3

CALL INITIALIZE_STEP3

CALL INITIALIZE_STEP3(X)
define n_vars_st3 & initial values of X { INTENT(OUT)} (see Table 2)

calling the another subroutine: CALL VARIABLE_LB_QUADS_STEP3(X)

CALL

VARIABLE_LB_QUADS_STEP3

called by initialize_step3: (details in Table 4)

CALL GSUIR

CALL GSUI1R(iseed,n_runs_st3,Random_array) (see Table 5)

Generate the random number array for simplex step “shaking”.

CALL amoeba

CALL amoeba

(n,npl, X, x_ini_step, F_out, EPSF_st2, ITMAX_st2, FUNC_vk, IERR)
(See parameter descriptions in Table 5)

Presently it called within the restarting loop for the simplex:

DO 98 i_run=1,n_runs_st3

CALL MNBIR

Still exist in the code, but does not perform minimization.

CALL FUNC_vk

(x, penfunQ, EPSF_st3)

Call the service subroutine for the objective function:

X (INOUT) - variable values; penfunQ (OUT)- objective function value;
EPSF_st3 — not used variable.

Here FUNC_vk will call actual objective for the step 3:

CALL penfunQ_step3(x, penfunQ) => see next line !

6-Aug-08 Page 18 of 27

SUBROUTINE find_minimum_step3

CALL PENFUNQ_STEP3(x, penfunQ) | X (INOUT) — variable values; penfunQ (OUT)- objective function value

CALL Variable_LB_quads_step3(x) ! at ini_step3=.FALSE.

(details in Table 4)

CALL Grouping_quads_into_circuits_011(x) (see table 4)

CALL One_turn_parameters (see Table 2)

CALL track_eigenvectors_at_bpms_step2 (see Table 2)

CALL constraint_vector_05 ! build the constrants

Call read_iel_TMtot_matrix(CPM_ord_pos(i), TMat_iel)

Table 10. 4th-step: adjust all quads and BPMs individually, correct initial phases:

CALL find_minimum_step4

SUBROUTINE find_minimum_step4

COMMON /STEP_data/ INTENT (IN), from main’s DATA): step_no, i_method

COMMON /var_grad_names_step4/ INTEGER N_GRAD_VARS_ST4

! the problem dimension at STEP4 is calculated at the beginning of this step

COMMON /var_bpmnames_step4/ INTEGER N_BPM_VARS_ST4

! the problem dimension at STEP4 is calculated at the beginning of this step

X(N) and F_out The vector of vary parameters (gradients) and the minimum of the

corresponding objective function.

Y(N) and G_out The vector of vary parameters (bpm calibrations and tilts) and the minimum

of the corresponding objective function

COMMON /Minimization_Step4/ The number of iterations for minimum search defined in MAIN at DATA

COMMON /simplex1_st4/ Two sets of for every objective functions:

Intent (IN), from main’s DATA):

ITMAX, ITMAY, EPSF1,EPSG1, x_ini_step, y_ini_step

In order to “shake” the simple several variables are introduced in this

COMMON: div_factor, rand_step_4,x_ini_step_var

CALL INITIALIZE_QUADS_STEP4 CALL INITIALIZE_QUADS_STEP4(X)
define N_GRAD_VARS_ST4 initial values of X { INTENT(OUT)} (see
Table 2) calling the another subroutine:

CALL VARIABLE_ALL_QUADS_STEP4 (X)

CALL called by INITIALIZE_QUADS_STEP4: (details in Table 2)

VARIABLE_ALL_QUADS_STEP4

6-Aug-08 Page 19 of 27

SUBROUTINE find_minimum_step4

CALL GSUIR CALL GSUIR(seed,1000,Random_array) (see Table 5)

Generate the random number array for simplex step “shaking”.

CALL INITIALIZE_BPMS_STEP4 Call initialize_ BPMs_step4(y)
define N_BPM_VARS_ST4 and initial values of Y { INTENT(OUT)} (see
Table 2) calling the another subroutine:

CALL VARIABLE_BPM_COEFFS_STEP4(Y)

CALL called by INITTIALIZE_BPMS_STEP4: (details in Table 2)

VARIABLE _BPM_COEFFS_STEP4

CALL amoeba Simplex minimization for the (“gradient”) objective function:
CALL amoeba(n,npl, X, x_ini_step, F_out, EPSFI,ITMAX,
* FUNC_vk, IERR)

(See parameter descriptions in Table 5)

Simplex minimization for the (“BPM”) objective function:

CALL amoeba(m,mpl, Y, Y_ini_step, G_out, EPSG1,ITMAY,

* penf_bpm_st4,JIERRG)
(See parameter descriptions in Table 5)
CALL FUNC_vk Call the service subroutine for the (“gradient”) objective function:
(x, penfunQ, EPSF1) X (INOUT) - variable values; penfunQ (OUT)- objective function value;

EPSF1 — not used variable.
Here FUNC_vk will call actual objective for the step 3 (not 4):

CALL penfunQ_step3(x, penfunQ) => see Table 9 for Step3

CALL PENF_BPM_ST4 Call the subroutine for the (“BPM”) objective function:

SUBROUTINE penf_bpm_st4(y, penfst4, FE)

6-Aug-08 Page 20 of 27

The Preliminary Tests

The created FORTRAN code has been successfully translated by the f2c-converter. The resulting C-
code had been compiled by GCC compiler without warnings. This code has been submitted to
MECCA too and a development version has been created.

The testing runs of the FORTARN code have been performed on PC with Pentium-1V (2 GHz)
processor. The objective functions at the fixed input parameters coincide with those calculated by
Mathematica with a good precision (4-5 digits). Minimization runs for steps 1 and 2, which use 4
variables have provided the same results for minimum of the objective function. However, the
minimization for steps 3 and 4 could not reach a minimum value of the objective function as low as
that one provided by the Mathematica version.

The reason is that principally different numerical minimization approaches has been used by the
FORTRAN and the Mathematica codes. The developed FORTRAN code applies the simplex
minimization procedure to the objective function assuming that it is just some general function of
many variables. Such function may have a lot of local minima, and a general minimization

procedure will not find a global one. The minimization algorithm realized with Mathematica takes

into account the fact that our objective function, F is a sum of squares of individual constraints, £;
. This allows to treat the minimization problem as a multidimensional root finding problem for a set

of non-linear equations realizing a kind of Newton’s method.

6-Aug-08 Page 21 of 27

Several methods for multidimensional root finding are described for instance in “Numerical

Recipes” [8] and could be used for minimizing the total objective function £ by combining it with
Newton’s method applied to the full set of functions £;. These methods are referred as **globally

convergent” methods.

We plan to implement some of these methods into our FORTRAN code in a near future.

The console application W116 for the on-line analysis

A console application has been written for the on-line analysis of the TBT data and the optics fit as
described above. The application allows the user to kick the beam in both planes and to analyze the
TBT data. The Fortran code, translated into C by using the translator f2c, has been embedded as a
subroutine into the C++ console application. It is the first time that such an experiment was done in
the Fermilab control system.
The changes to the f2¢ generated code were kept to the very minimum. For instance the existing
input/output was left inside the subroutines.
Here we give some details about how to use the application.
All output files are written into the area

/usr/local/cbs_files/cns_write/
These files may be written in principle only by the console application.
After that the beam has been kicked in both plane and the TBT data following each kick analyzed,

the eigenvector components at the well behaving BPMs are stored into the files

6-Aug-08 Page 22 of 27

fusr/local/cbs_files/cns_write/eliana/TBT_datal HBPMs
/usr/local/cbs_files/cns_write/eliana/TBT_data2_ HBPMs
/usr/local/cbs_files/cns_write/eliana/TBT_datal_VBPMs
/usr/local/cbs_files/cns_write/eliana/TBT_data2_VBPMs
These files are read by the fitting routines. The values of the tunes and phases advances across the
IPs and between Ips are saved into
/usr/local/cbs_files/cns_write/eliana/tunes_and_phases.dat
If the beam is not kicked inside the session, but files already exist, those files are used for the optics
fit. This feature is useful for instance for re-analyzing data with different fitting parameters.
However in this case the user must assign inside the calibration file a non-vanishing value to the
validity flag of the BPMs not contained in the eigenvector files which must be excluded.
Tunes and phases are read from file, but can be also specified by the user.
The fit output is contained into
/usr/local/cbs_files/cns_write/eliana/fit.out
whereas the remaining output is written into
/ust/local/cbs_files/cns_write/eliana/fit_tempfile.dat
This file can be inspected before starting the fit computation. To get the very last summary, after
clicking on “"Perform fit" the user must answer ~ Cancel" and click on ~"TBT Results". Clicking
again on Perform fit" and answering =~ OK" the code will proceed to the fit.
The control LINUX public area

/export/homel/eliana/public/
6-Aug-08 Page 23 of 27

contains the following input files

file name content usage
MYOPTFILE.dat optics at BPMs reference for TBT analysis
inj_calibrations.dat LOCO calibrationsé&tilts TBT analysis
for injection optics
lum_ calibrations.dat LOCO calibrationsé&tilts TBT analysis
for luminosity optics
tev_SM.txt Tevatron maps optics fit
norm_quad_grads.tx starting values of normal
multipoles
skew_quad_grads.txt starting values of skew optics fit
multipoles
norm_quad_names.txt norm multipole names&flags optics fit
skew_quad_names.txt skew multipole names&flags optics fit
HBPM_names.txt horizontal BPM names optics fit
VBPM_ names.txt vertical BPM names optics fit
BPM_clbr.ini initial BPM calibration values optics fit
BPM _tilt.ini initial BPM tilt values optics fit
6-Aug-08 Page 24 of 27

The optics file contains the following BPMs data

name position | Bx o X Dx By Qy My Dy

The last row must contain an element named “"END_RING" for specifying the length

of the ring. This file may be used instead of the optics data included in the code.

To switch between optics, click on the field ~"Options" of the main menu bar.

The order of the data contained in the LOCO calibration and tilt files is

name calibration tilt offset user validity flag

The field “"offset" is obsolete. The calibration is defined as (xmeas-xtrue)/xtrue; the tilt is given in
fractions of 11/2. The values of the BPMs calibrations and tilts are those obtained through the
differential orbit measurements [9].

The tilts are set by default to zero; the user may turn their use on. They are used only in the

coupling functions computation.

The user may chose the multipoles to be varied giving them a vanishing flag in the name
and flag files. The multipole flags may be also changed inside the application under the Step4

option. This choice will overwrite the flags found in the file.

6-Aug-08 Page 25 of 27

By default all 4 steps will be executed one after the other and the corresponding field highlighted.
The default starting fitting parameters for each step may be changed by the user by clicking
on the field “*-sel-" of the corresponding step.
To somehow de-activate a step, the user must click on the left side of the step field. When the field
is not highlighted it means

Stepl: weights for the tunes and phase advances are set to 0.

Step2: goal penalty function is set to 1e10

Step3: goal penalty function is set to 1le2

Step4: step 4 is skipped.
Moreover when the tolerance is set to a value larger or equal to le4, the step3 is skipped; in this
case the output multipole values contain only the increments.
When ITMAY is smaller or equal to 1 or EPSG1 larger or equal to 1e4, the BPMs calibration and

tilt optimization in Step 4 is skipped.

References

1. Y. Alexahin, E. Gianfelice-Wendt, V. Kapin, F. Schmidt, “Coupled Optics Reconstruction
from TBT Data Using MAD-X”, Proc. Of PACO7, Albuquerque, New Mexico, USA, 2007

by IEEE, pp. 3471-3473.

6-Aug-08 Page 26 of 27

. Y.Alexahin,V. Kapin, F. Schmidt, “Using Eigenvectors as Constraints in MAD-X Matching

Module” FNAL Beams-doc-2449-v2 (20006).

http://beamdocs.fnal.gov/AD-public/DocDB/DocumentDatabase.

“MAD-X User Guide”, http://mad.home.cern.ch/mad/uguide.html.

“Mathematica” (mathematical software system), http://www.wolfram.com.

“MathCode F90” & “MathCode C++”, http://www.mathcore.com/

. MECCA, http://cns40.fnal.gov/userb/www/controls/mecca/mecca.html.

S.I.Feldman et al., “A Fortran-to-C Converter”, 1990 & 1995 by AT&T Bell Laboratories.
. W.H.Press, “Numerical Recipes” — The Art of Scientific Computing, 2007 by Cambridge

University Press. Ch9 and 10.

. V.Lebedev, V.Nagaslaev, A.Valishev, V.Sajaev, NIM A 558 (2006) 299.

6-Aug-08 Page 27 of 27

http://cns40.fnal.gov/userb/www/controls/mecca/mecca.html
http://www.mathcore.com/

	1. Introduction
	General Requirements for the Console Application
	The Files and Routines of the Fortran Code.
	The Functional Structure of the Fortran Code.
	The Preliminary Tests
	References

