An ACNet Front-end Based EPICS Gateway

[ntroduction

Beam instrumentation for HINS and NML is being developed using ACNet, EPICS and
LabVIEW tools. ACNet in this context refers to the traditiona Fermilab global
accelerator control system, EPICS is the open source Experimental Physics and Industrial
Control System chiefly available from ANL, and LabVIEW is a commercial graphical
programming language and integrated development environment from National
Instruments Corporation.

The Controls Department has declared that the evolving Project X specification for
ACNet defines the baseline global control system architecture going forward. It is
desirable to integrate existing EPICS and LabVIEW based control points into the system
inaway that is transparent to users while providing maximum ACNet-like functionality.

This note concentrates on the ACNet to EPICS interface software module called
ClassACNetEpics by providing a brief overview of the software, documentation for the
module API and simple examples of its use.

Overview
ClassACNetEpics is a C++ software module that can run in any supported (i.e., VXWorks
and PowerPC) MOOC/ACNEet front-end or EPICS I0C. It is implemented using the
ClassACNet object based interface to MOOC/ACNet, and the database and channel
access APIs of EPICS. The layered relationship of these software componentsis outlined
in Table 1.

ACNet C based ACNet network communication protocols
MOOC C based high level data protocols and emulated class environment
ClassACNet C++ based data object environment

ClassACNetEpics | C++ based ClassACNet plug-insfor EPICS DB & CA protocols
EPICSDB & CA | C based EPICS Database and Channel Access network protocols
Table1

A gateway node operates simultaneously as a full featured MOOC/ACNet front-end and
asan EPICS IOC. Each may optionally handle user defined control system functions but
their primary purpose is to contribute their unique network communication protocol

1of 13
100907
DCV

features to the gateway. The overall architecture is essentialy master/slave with
MOOC/ACNet the master, ClassA CNetEpics the protocol gateway and EPICS the slave.
Minimal support for EPICS one-shot access to ACNet devicesis available, but that is not
emphasised in the design.

Module ClassACNetEpics consists of three software elements outlined in Table 2.

class EpicsDeviceDB | ClassACNet accessor for EPICS database access
class EpicsDevice ClassACNet accessor for EPICS channel access

ClassACNetEpics C language wrapper routines & VxWorks shell script interface
Table 2

The EpicsDeviceDB and more general EpicsDevice classes treat EPICS |OC nodes like a
field bus attached to multiple control/data points that may be accessed on demand. There
is no attempt to map higher level EPICS operations like alarm reporting into the ACNet
space. If the global control system requires alarms and limits processing for a given
EPICS PV then a MOOC aarm scan of the PV’s value must be created using ACNet
tools. The gateway ignores any incidental EPICS alarm monitoring.

EpicsDeviceDB uses the EPICS database library to create relatively high performance
access to local EPICS records. All read and set operations are one-shot and any resulting
database error indications are reported to ACNet as unrecoverable errors.

EpicsDevice uses the EPICS channel access library to create a connection to EPICS
records whether they reside locally or in a remote node. Upon initialization the gateway
attempts to establish a temporary connection to the PV to determine whether it in deed
exists on the network and to identify its data type and size. If this initial connection
status indicates that the target PV cannot be located a recoverable ‘device not found’
status is reported to ACNet and the gateway continues trying to establish the connection
in the background. This alows the target IOC node to be booted and the gateway to be
established without the need to restart any ACNet client requests. No persistent gateway
connections exist until an ACNet client requests service. In genera one-shot ACNet
reads and sets result in one-shot channel access operations. For non-one-shot read
operations the first ACNet request for a given PV causes the gateway to establish an
EPICS monitor on the PV and to record any PV vaue changes in a buffer that is
asynchronously read by ACNet at the client specified rate. Subsequent client read
requests for the same PV will receive values from that same buffer. If the IOC hosting

2 of 13
100907
DCV

the monitored PV stops responding for any reason a recoverable ‘device not connected’
status is reported to ACNet and the gateway continues operation by trying to reestablish
the monitor in the background. This allows the host IOC node to recover or be rebooted,
and the gateway to reconnect without the need to restart any ACNet client requests. One-
shot read requests for a PV that is already actively monitored will immediately receive
the most recent PV value. All set operations are one-shot, are never deferred and return
an unrecoverable error status if they cannot be successfully completed.

The ClassA CNetEpics wrapper routines provide a convenient mechanism for C language
code or the VxWorks startup script to initialize the gateway infrastructure and to
configure gateway links. In general asingle line of code is required for initialization, and
then another line of code is required to specify each ACNet device.

class EpicsDeviceDB

The EpicsDeviceDB class provides optimized read and set access to EPICS PVs via the
EPICS database access library. EpicsDeviceDB is therefore limited to use with PVs that
reside within the gateway node itself. The EpicsDeviceDB class has three constructors
documented more completely in classacnetepi csdevicedb.h:

I

/1 constructor for 'big 5 process variable set

/] data objects: reading in recordNane. VAL, setting in recordNane. SET

/1 control objects: status in recordNane. BSTA, control in recordNane. BCTL
I

/] Constructor paraneters:

/] statusPtr - pointer to status returned by constructor

/1 namePtr - name associated with the accessor's data

/1 (usual ly the ACNet device nane)

/1 devicelD - user assigned integer device identifier for this Obj Accessor
/1 control Object - true if accessor is status/control, false if reading/setting
/1 recordNamePtr - EPICS process variable record nane

/1 (inmplied field nanes . VAL and . SET or .BSTA and . BCTL)

/1 diagnosticControl - enable/disable diagnostic nessages
/1 toAvoi dAnbiguity - true or false -- it does not matter!
I

Epi csDevi ceDB(ePortal Status * const statusPtr,

char const * const namePtr, unsigned int const devicelD,
bool const control Object,

char const * const recordNanePtr,

eDi agnosti cControl const diagnosticControl,

bool toAvoi dAnbiguity);

11

/] constructor for reading/setting or status/control process variable pair

/1 read and set values in any specified <recordNane.fiel dNane>

[/ if read or set is not required use NULL for associ ated xxxNamePtr paraneter
3of 13

100907

DCV

I

/1 Constructor paraneters:

/] statusPtr - pointer to status returned by constructor

/1 namePtr - name associated with the accessor's data

/1 (usual ly the ACNet device nane)

/1 devicel D - user assigned integer device identifier for this Obj Accessor

/1 control Object - true if accessor is status/control, false if reading/setting
/1 readNanePtr - EPICS process variable <recordNane. fiel dNane> for reads

/] setNanmePtr - EPICS process variable <recordNane. fiel dNane> for sets

/1 diagnosticControl - enable/disable diagnostic nessages
I/
Epi csDevi ceDB(ePortal Status * const statusPtr,

char const * const nanmePtr, unsigned int const devicelD,
bool const control Object,

char const * const readNanePtr,

char const * const set NanePtr,

eDi agnosti cControl const diagnosticControl);

I
/1 constructor for a single process variable
/1 single ACNet property in any specified <recordNane. fiel dName>
I
/1 Constructor paraneters:
/] statusPtr - pointer to status returned by constructor
/1 namePtr - name associated with the accessor's data
/1 (usual ly the ACNet devi ce nane)
/1 devicel D - user assigned integer device identifier for this Obj Accessor
/1 property - kReading, kSetting, kBasicStatus or kBasicControl
/1 pvNanmePtr - EPICS process variabl e <recordNane. fiel dName> for the property
/1 diagnosticControl - enable/disable diagnostic nessages
I/
Epi csDevi ceDB(ePortal Status * const statusPtr,
char const * const namePtr, unsigned int const devicelD,
eProperty const property, char const * const pvNanmePtr,
eDi agnosti cControl const diagnosticControl);

An example from one of the test programs provides ACNet with access to some of the
fields of a record instance named ‘ied_acnettest’ in the node ied.fnal.gov. The record
produces a 1024 point sine waveform in ied_acnettest. WAVE and a single selected
sample of the waveform in ied_acnettest. VAL. The amplitude of the sine wave is set via
ied_acnettest.SET and it can be reset, enabled/disabled or polarity reversed via
ied_acnettest.BCTL. Finaly, ied_acnettest. BSTA provides on/off and polarity status of
the waveform.

ePort al St at usst at us;
(void) new Portal (&status, "Local EPICS", 0x0018, 0, k720HzPlot, 0, kD agOrf);

/1l the ‘big 5
(void) new EpicsDevi ceDB(&status, "Z:EPICS', 0x0001,
kReadi ng, "ied_acnettest.VAL", kD agOf);

4 0of 13
100907
DCV

(voi d) new EpicsDevi ceDB(&status, "Z:EPICS', 0x0001,

kSetting, "ied_acnettest.SET", kD agOf);
(voi d) new EpicsDevi ceDB(&status, "Z:EPICS', 0x0001,

kBasi cStatus, "i ed_acnettest.BSTA", kD agOf);
(voi d) new EpicsDevi ceDB(&status, "Z:EPICS', 0x0001,

kBasi cControl, "ied_acnettest.BCTL", kDiagOrf);
/1 read only device
(voi d) new Epi csDevi ceDB(&status, "Z:EPICSR', 0x0002,

kReadi ng, "ied_acnettest.VAL", kD agOf);
/1l set only (and reading of setting) device
(voi d) new Epi csDevi ceDB(&status, "Z:EPICSS', 0x00083,

kSetting, "ied_acnettest.SET", kD agOf);
/1 array device
(voi d) new Epi csDevi ceDB(&status, "Z:EPICSA", 0x0004,

kReadi ng, "ied_acnettest.WAVE", kD agOff);

class EpicsDevice

The more genera EpicsDevice class provides read and set access to EPICS PVs via the
EPICS channel access library. EpicsDevice may therefore be use with PV's that reside
within the gateway node itself or in remote I0Cs. (For PVs that reside locally it is
considerably more efficient to use the EpicsDeviceDB class) Thereis abug in EPICS
channel access design that incorrectly decodes unsigned database field types. As a
workaround, it was decided that the EpicsDevice class would require the user to
explicitly specify the desired DBR datatype. Asabonusthis‘feature’ allows the user to
specify a data conversion from the DBF type to a different DBR type if desired. The
EpicsDevice class has three constructors documented more completely in
classacnetepicsdevice.h:

I

/1 constructor for 'big 5 process variable set

/] data objects: reading in recordNane. VAL, setting in recordNane. SET

/1 control objects: status in recordNane. BSTA, control in recordNane. BCTL
I

[/ Constructor paraneters:

/] statusPtr - pointer to status returned by constructor

/1 namePtr - name associated with the accessor's data

/1 (usual ly the ACNet devi ce nane)

/1 devicelD - user assigned device identifier for this Obj Accessor

/1 control Object - true if accessor is status/control, false if reading/setting
/1 recordNamePtr - EPICS process variable record nane

/1 (inmplied field nanes . VAL and . SET or .BSTA and .BCTL)

/] readDbr Type — EPICS dat abase record type for reads

/1 (one of DBR xxx from db_access. h)

/] setDbrType - EPICS database record type for sets

/1 (one of DBR xxx from db_access. h)

[/ diagnosticControl - enable/disable diagnostic nmessages

I

Epi csDevi ce(ePortal Status * const statusPtr,

5of 13
100907
DCV

char const * const namePtr, unsigned int const devicelD,
bool const control Object,

char const * const recordNanePtr,

unsi gned int const readDbr Type,

unsi gned int const setDbrType,

eDi agnosti cControl const diagnosticControl = kDi agOff) ;

I
/1 constructor for reading/setting or status/control process variable pair
/1 read and set values in any specified <recordNane. fiel dNane>
/1 if read or set is not required use NULL for associ ated xxxNanmePtr paraneter
I/
/1 Constructor paraneters:
/] statusPtr - pointer to status returned by constructor
/1 namePtr - name associated with the accessor's data
/1 (usual ly the ACNet devi ce nane)
/1 devicelD - user assigned device identifier for this bj Accessor
/1 control Object - true if accessor is status/control, false if reading/setting
/1 readNanePtr - EPICS process variabl e <recordNane. fiel dNane> for reads
/1 readDbr Type — EPICS dat abase record type for reads
/1 (one of DBR xxx from db_access. h)
/] setNanmePtr - EPICS process variable <recordNane. fiel dNane> for sets
/] setDbrType - EPICS database record type for sets
/1 (one of DBR xxx from db_access. h)
/1 diagnosticControl - enable/disable diagnostic nessages
I
Epi csDevi ce(ePortal Status * const statusPtr,
char const * const namePtr, unsigned int const devicelD,
bool const control Object,
char const * const readNanePtr,
unsi gned int const readDbr Type,
char const * const set NanePtr,
unsi gned int const setDbrType,
eDi agnosti cControl const diagnosticControl = kDi agOff);
I
/1 constructor for a single process variable
/1 single ACNet property in any specified <recordNane. fiel dName>
I
[/ Constructor paraneters:
/] statusPtr - pointer to status returned by constructor
/1 namePtr - name associated with the accessor's data
/1 (usual ly the ACNet devi ce nane)
/1 devicel D - user assigned device identifier for this Obj Accessor
I/ property - kReading, kSetting, kBasicStatus or kBasicControl
/1 pvNanePtr - EPICS process variable <recordNane.fiel dName> for the property
/1 pvDbrType - EPICS database record type (one of DBR xxx from db_access. h)
/1 diagnosticControl - enable/disable diagnostic nessages
I
Epi csDevi ce(ePortal Status * const statusPtr,
char const * const namePtr, unsigned int const devicelD,
eProperty const property, char const * const pvNamePtr,
unsi gned int const pvDbrType,
eDi agnosti cControl const diagnosticControl = kDiagOff);
6 of 13
100907

DCV

An example from one of the test programs provides ACNet with access to some of the
fields of a record instance named ‘ied_acnettest’ in the node ied.fnal.gov. The record
produces a 1024 point sine waveform in ied_acnettest. WAVE and a single selected
sample of the waveform in ied_acnettest. VAL. The amplitude of the sine wave is set via
ied acnettest.SET and it can be reset, enabled/disabled or polarity reversed via
ied_acnettest.BCTL. Finaly, ied_acnettest. BSTA provides on/off and polarity status of
the waveform.

ePort al St at usst at us;
(void) new Portal (&status, "RenoteEPICS', 0x0019, 0, k15HzPlot, 0, kD agOrf);

/1l the ‘big 5
(voi d) new EpicsDevice(&status, "Z: EPICS', 0x0001,

kReadi ng, "ied_ acnettest.VAL", DBR FLOAT, kD agOrf);
(voi d) new EpicsDevice(&status, "Z: EPICS', 0x0001,

kSetting, "ied_ acnettest.SET", DBR FLOAT, kD agOff);
(voi d) new EpicsDevice(&status, "Z: EPICS', 0x0001,

kBasi cStatus, "ied_acnettest.BSTA", DBR LONG kD agOff);
(void) new EpicsDevice(&status, "Z EPICS', 0x0001,

kBasi cControl, "ied acnettest.BCTL", DBR LONG kDiagOf);
/1 read only device
(voi d) new EpicsDevice(&status, "Z: EPICSR', 0x0002,

kReadi ng, "ied_ acnettest.VAL", DBR FLOAT, kD agOrf);
/1l set only (and reading of setting) device
(voi d) new EpicsDevice(&status, "Z:EPICSS', 0x0003,

kSetting, "ied acnettest.SET", DBR FLOAT, kD agOff);
/] array device
(voi d) new EpicsDevice(&status, "Z: EPICSA", 0x0004,

kReadi ng, "ied_acnettest.WAVE', DBR FLOAT, kD agOff);

module ClassACNetEpics
The ClassA CNetEpics module contains a family of C language wrapper functions that
allow C or VxWorks shell programmers to construct and define a gateway:

EpicsDeviceNew | Install and initialize standard gateway portals

EpicsDeviceB5 Constructor for 'Big 5' process variable set
EpicsDeviceRS Constructor for reading/setting process variable pair
EpicsDeviceSC Constructor for basic status/control process variable pair

EpicsDevice Constructor for single process variable
Table 3
7 of 13
100907

DCV

The function EpicsDeviceNew() creates three ClassACNet Portal instances, based at the
specified portalID, with unique fast plot capabilities as follows:

basePortal D 15 Hz FTP protocol portal

BasePortalD +1 | 720 Hz FTP protocol portal

BasePortalD + 2 | Portal with no FTP protocol support (default 15 Hz maximum)
Table 4

The function EpicsDeviceNew() is documented in classacnetepics.h:

I

/1 Instantiate EpicsDevice Portals

I

/] Called once to instantiate three C assACNet portals with increnenting
/1 portal I D val ues begi nning at basePortal | D:

/1 basePortal ID - 15 Hz FTP support portal

/1 basePortal ID + 1 - 720 Hz FTP support portal

/1 basePortal ID + 2 - no FTP support portal

I

/1 Function paraneters:

/1 basePortalID - portallD for first portal (e.g., 0x0018)

/1 diagnosticControl - enable/disable diagnostic nessages

I/ From cl assacnet . h:

/1 typedef enum { // diagnostic control

/1 kDi agnosti cDi sable = 0,

/1 kDi agOFf = kDi agnosti cDi sabl e,

/1 kDi agnosti cEnabl e,

/1 kDi agOn = kDi agnosti cEnabl e,

/1 kDi agAnnounceReads, /1 CAUTION:. can happen often and at high rates!
/1 kDi agAnnounceSet s

/1 } eDi agnosticControl;

I
extern "C' Cl assACNet::ePortal Status
Epi csDevi ceNew unsi gned int const basePortal | D,
Cl assACNet : : eDi agnosti cControl const diagnosticControl);

The function EpicsDeviceB5() is a wrapper around the EpicsDeviceDB and EpicsDevice
class constructors for a ‘big 5’ process variable set. EpicsDeviceB5() can connect a
single carefully crafted EPICS record instance to an ACNet device with the reading,
setting, reading of setting, basic status and basic control properties. The EPICS record
must have fields named .VAL, .SET, .BSTA and .BCTL for the mapping to work. The
function EpicsDeviceB5() is documented in classacnetepics.h:

I

/1 constructor for '"big 5 process variable set

/1 reading in recordNanePtr. VAL, setting in recordNanmePtr. SET

/] status in recordNanePtr.BSTA, control in recordNanmePtr.BCTL
8of 13

100907

DCV

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
I
I
11
I
11
11
11
11
11
11
11
11
11
11
11
11
11

Functi on paraneters:
portal Sel ect - select portal performance characteristics
From cl assacnet . h:
typedef enum { // fast plot support types

k15HzPI ot , /1 Portal supports 15 Hz fast plots
k720HzPI ot , /1 Portal supports 720 Hz fast plots
kNoFast Pl ot , /1 Portal does not support fast plots

kNunfast Pl ot Type
} eFast Pl ot Type;
renot eDevi ce - determ nes accessor type for EPICS operations
fal se: access will be via data base calls using class EpicsDeviceDB
true: access will be via channel access calls using class EpicsDevice
nanePtr - pointer to the nane associated with the accessor's data
(usual ly the ACNet device nane)
devicel D - user assigned integer device identifier for this CbjAccessor
recordNanePtr - EPICS process variable record nane
readi ngbbr Type - EPI CS dat abase record type, not used with | ocal DB access
setti ngDbr Type - EPICS dat abase record type, not used with |ocal DB access
statusDbr Type - EPI CS dat abase record type, not used with | ocal DB access
control Dbr Type - EPICS database record type, not used with | ocal DB access
(see DBR xxx from db_access.h for details)
di agnosti cControl - enabl e/ di sabl e di agnosti c nessages
From cl assacnet . h:
typedef enum { // diagnostic control
kDi agnosti cDi sable = 0,
kDi agOFf = kDi agnosti cDi sabl e,
kDi agnosti cEnabl e,
kDi agOn = kDi agnosti cEnabl e,
kDi agAnnounceReads, /1 CAUTION: can happen often and at high rates!
kDi agAnnounceSet s
} eDi agnosticControl;

extern "C' Cl assACNet::ePortal Status
Epi csDevi ceB5(C assACNet : : eFast Pl ot Type const portal Sel ect,

The function EpicsDeviceRS() is a wrapper around the EpicsDeviceDB and EpicsDevice
class constructors for a reading/setting process variable pair. The reading may reside in
any <recordName.fieldName> and the setting (and reading of setting) may reside in any
other <recordName.fieldName>. The function EpicsDeviceRS() is documented in

bool const renoteDevice,

char const * const nanePtr,

unsi gned int const devicel D,

char const * const recordNanePtr,

unsi gned int const readi ngDbr Type,

unsi gned int const settingDbrType,

unsi gned int const statusDbrType,

unsi gned int const control Dor Type,

Cl assACNet : : eDi agnosti cControl const diagnosticControl);

classacnetepics.h:

9 of 13

100907
DCV

I

/1 constructor for reading/setting process variable pair

/1 reading in readi ngNanmePtr, setting in settingNanePtr

I/

/1 Function paraneters:

/] portal Sel ect - select portal perfornmance characteristics
I/ From cl assacnet . h:

/1 typedef enum { // fast plot support types

/1 k15HzPI ot , /1 Portal supports 15 Hz fast plots
/1 k720HzPI ot , /1 Portal supports 720 Hz fast plots
/1 kNoFast Pl ot , /1 Portal does not support fast plots
/1 kNunfast Pl ot Type

/1 } eFast Pl ot Type;

/'l renoteDevice - determ nes accessor type for EPICS operations

/1 fal se: access will be via data base calls using class EpicsDeviceDB

/1 true: access will be via channel access calls using class EpicsDevice

/1 namePtr - pointer to the nane associated with the accessor's data

/1 (usual ly the ACNet device nane)

/1 devicelD - user assigned integer device identifier for this Obj Accessor

/1 readi ngNamePtr - EPICS readi ng PV <recordNane. fi el dNane>

/1 readi ngDbr Type - EPICS database record type, not used with |ocal DB access
/1 (see DBR xxx from db_access.h for details)

/] settingNamePtr - EPICS setting PV <recordNane. fiel dNane>

/1 settingDbrType - EPICS database record type, not used with |ocal DB access
/1 (see DBR xxx from db_access.h for details)

/1 diagnosticControl - enable/disable diagnostic nessages
I/ From cl assacnet . h:

/1 typedef enum { // diagnostic control

/1 kDi agnosti cDi sable = 0,

/1 kDi agOFf = kDi agnosti cDi sabl e,

/1l kDi agnosti cEnabl e,

/1 kDi agOn = kDi agnosti cEnabl e,

/1 kDi agAnnounceReads, /1 CAUTION: can happen often and at high rates!
/1 kDi agAnnounceSet s

/1 } eDiagnosticControl;

I

extern "C' Cl assACNet: : ePortal Status
Epi csDevi ceRS(Cl assACNet : : eFast Pl ot Type const portal Sel ect,
bool const renoteDevice,
char const * const nanePtr,
unsi gned int const devicel D,
char const * const readi ngNanePtr,
unsi gned i nt const readi ngDbr Type,
char const * const settingNanePtr,
unsi gned int const settingDbrType,
Cl assACNet : : eDi agnosti cControl const diagnosticControl);

The function EpicsDeviceSC() is a wrapper around the EpicsDeviceDB and EpicsDevice
class constructors for a status/control process variable pair. The basic status may reside
in any <recordName.fieldName> and the basic control may reside in any other

10 of 13
100907
DCV

<recordName.fieldName>. The function EpicsDeviceSC() is documented
classacnetepics.h:

11
11
11
11
11
11
11
11
11
11
11
11
I
11
I
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

constructor for basic status/control process variable pair
status in statusNanmePtr, control in control NamePtr

Functi on paraneters:
portal Sel ect - select portal performance characteristics
From cl assacnet . h:
typedef enum { // fast plot support types

k15HzPI ot , /1 Portal supports 15 Hz fast plots
k720HzPI ot , /1 Portal supports 720 Hz fast plots
kNoFast Pl ot , /1 Portal does not support fast plots

kNunfast Pl ot Type
} eFast Pl ot Type;
renot eDevi ce - determ nes accessor type for EPICS operations
fal se: access will be via data base calls using class EpicsDevi ceDB
true: access will be via channel access calls using class EpicsDevice
nanePtr - pointer to the nane associated with the accessor's data
(usual ly the ACNet device nane)
devicel D - user assigned integer device identifier for this CbjAccessor
statusNanmePtr - EPICS basic status PV <recordNane. fi el dNane>
statusDbr Type - EPI CS dat abase record type, not used with | ocal DB access
(see DBR xxx from db_access.h for details)
control NanePtr - EPICS basic control PV <recordNane. fiel dName>
control Dbr Type - EPICS database record type, not used with |ocal DB access
(see DBR xxx from db_access.h for details)
di agnosti cControl - enabl e/ di sabl e di agnosti c nessages
From cl assacnet . h:
typedef enum { // diagnostic control
kDi agnosti cDi sable = 0,
kDi agOFf = kDi agnosti cDi sabl e,
kDi agnosti cEnabl e,
kDi agOn = kDi agnosti cEnabl e,
kDi agAnnounceReads, [/ CAUTI ON: can happen often and at high rates!
kDi agAnnounceSet s
} eDiagnosticControl;

extern "C' Cl assACNet::ePortal Status
Epi csDevi ceSC(Cl assACNet : : eFast Pl ot Type const portal Sel ect,

bool const renpteDevice,

char const * const nanePtr,

unsi gned i nt const devicel D,

char const * const statusNanePtr,

unsi gned int const statusDbrType,

char const * const control NanePtr,

unsi gned int const control Dbr Type,

Cl assACNet : : eDi agnosti cControl const diagnosticControl);

11 of 13

100907
DCV

in

The function EpicsDevice() is a wrapper around the EpicsDeviceDB and EpicsDevice
class constructors for any single process variable. EpicsDevice() can map any
<recordName.fieldName> to a single property of an ACNet device. Up to four
EpicsDevice() cals can be made to fully map an ACNet device with the big 5 properties.
The function EpicsDevice() is documented in classacnetepics.h:

I/

/1 constructor for single process variable

/1 single ACNet property in any specified <recordNane. fiel dName>
I

/1 Function paraneters:

/] portal Sel ect - select portal perfornmance characteristics

I/ From cl assacnet . h:

/1 typedef enum { // fast plot support types

/1 k15HzPI ot , /1 Portal supports 15 Hz fast plots
/1 k720HzPI ot , /1 Portal supports 720 Hz fast plots
/1 kNoFast Pl ot , /1 Portal does not support fast plots
/1 kNuntast Pl ot Type

/1 } eFast Pl ot Type;

/'l renoteDevice - determ nes accessor type for EPICS operations

/1 fal se: access will be via data base calls using class EpicsDevi ceDB
/1 true: access will be via channel access calls using class EpicsDevice
/1 namePtr - pointer to the nane associated with the accessor's data

/1 (usual ly the ACNet devi ce nane)

/1 devicel D - user assigned integer device identifier for this Obj Accessor
/| property - MOOC pi (e.g., PI_READNG PI_SETTNG PI_BASTAT & Pl _BCNTRL)
I/ From nooc++. h:

I #define PI_READNG 12

I #define PI_SETTNG 13

I #define PI_BASTAT 4

/1 #define PI_BCNTRL 3

/1 pvNanePtr - EPICS process variabl e <recordNane. fi el dNane>

/1 pvDbrType - EPICS database record type, not used with | ocal DB access
/1 (see DBR xxx from db_access. h for details)

/1 diagnosticControl - enable/disable diagnostic nessages
I From cl assacnet . h:

I typedef enum { // diagnostic control

/1l kDi agnosti cDi sable = 0,

/1 kDi agOFf = kDi agnosti cDi sabl e,

/1l kDi agnosti cEnabl e,

/1 kDi agOn = kDi agnosti cEnabl e,

I kDi agAnnounceReads, [/ CAUTI ON: can happen often and at high rates!
/1 kDi agAnnounceSet s

/1l } eDiagnosticControl;

I

extern "C' C assACNet::ePortal St atus
Epi csDevi ce(Cl assACNet : : eFast Pl ot Type const portal Sel ect,
bool const renoteDevice,
char const * const nanePtr,
unsi gned int const devicel D,
unsi gned int const property,
char const * const pvNanmePtr,

12 of 13
100907
DCV

unsi gned int const pvDbr Type,
Cl assACNet : : eDi agnosti cControl const diagnosticControl);

An example from one of the test programs provides ACNet with access to some of the
fields of a record instance named ‘ied_acnettest’ in the node ied.fnal.gov. The record
produces a 1024 point sine waveform in ied_acnettest. WAVE and a single selected
sample of the waveform in ied_acnettest. VAL. The amplitude of the sine wave is set via
ied_acnettest.SET and it can be reset, enabled/disabled or polarity reversed via
ied acnettest.BCTL. Finaly, ied_acnettest. BSTA provides on/off and polarity status of

the waveform. The following is taken from the startup script for node ied.fnal.gov:

Exanpl es - see classacnetepics.h for details:
One way:
constructor for 'big 5 process variable set

HHHHH

H*

#Epi csDevi ceB5(PLOT_NOFAST, DB ACCESS, "Z:EPICS", 0x0001, "ied_ acnettest",
DBR_FLOAT, DBR _FLOAT, DBR LONG DBR LONG DI AG OFF)

#

Anot her way:

constructor for reading/setting process variable pair

readi ng resides in readi ngNamePtr, setting resides in settingNanmePtr
#Epi csDevi ceRS(PLOT_NOFAST, DB _ACCESS, "Z:EPICS', 0x0001,
"ied_acnettest.VAL", DBR FLOAT, "ied_ acnettest.SET", DBR FLOAT, DI AG OFF)
constructor for basic status/control process variable pair

status resides in statusNamePtr, control resides in control NanmePtr
#Epi csDevi ceSC(PLOT_NOFAST, DB _ACCESS, "Z:EPICS', 0x0001,
"ied_acnettest.BSTA', DBR LONG "ied acnettest.BCTL", DBR _LONG DI AG OFF)
#

Still another way:

constructor for single process variable

single ACNet property resides in any specified <recordNane. fiel dName>
Epi csDevi ce(PLOT_NOFAST, DB_ACCESS, "Z:EPICS', 0x0001, PlI_READNG
"ied_acnettest.VAL", DBR FLOAT, DI AG OFF)

Epi csDevi ce(PLOT_NOFAST, DB_ACCESS, "Z:EPICS', 0x0001, PlI_SETTNG
"ied_acnettest.SET", DBR FLOAT, DI AG OFF)

Epi csDevi ce(PLOT_NOFAST, DB_ACCESS, "Z:EPICS', 0x0001, Pl _BASTAT,
"ied_acnettest.BSTA", DBR LONG, DI AG OFF)

Epi csDevi ce(PLOT_NOFAST, DB_ACCESS, "Z:EPICS', 0x0001, PlI_BCNTRL,
"ied_acnettest.BCTL", DBR LONG DI AG OFF)

#

Epi csDevi ce(PLOT_NOFAST, DB_ACCESS, "Z: EPICSR', 0x0002, PlI_READNG
"ied_acnettest.VAL", DBR FLOAT, DI AG OFF)

Epi csDevi ce(PLOT_NOFAST, DB_ACCESS, "Z:EPICSS', 0x0003, PlI_SETTNG
"ied_acnettest.SET", DBR FLOAT, DI AG OFF)

Epi csDevi ce(PLOT_NOFAST, DB_ACCESS, "Z: EPICSA', 0x0004, Pl _READNG
"ied_acnettest.WAVE", DBR FLOAT, DI AG OFF)

13 of 13
100907
DCV

readi ng resides in recordNanePtr. VAL, setting resides in recordNamePtr.SET
status resides in recordNanmePtr.BSTA, control resides in recordNanePtr. BCTL

