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Objective

B The success of Tevatron Run IT is based on advances in

¢ the accelerator physics,

¢ as well as, on the excellence and advances in
e engineering
e instrumentation
e and machine operation.

B |ectures are devoted to review the main advances in Accelerator
physics which contributed to the luminosity growth and/or
improvement of the Tevatron complex operations.

B The lectures are aimed for the Run II participants who would like to
deepen their understanding of the accelerator physics.

B The level of the presented material corresponds to the advanced
course of accelerator physics but at the same time we would like to
present material so that it could be understandable for less prepared
listeners

B It will be presented by real participants
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List of the lectures (can be modified on the road)

1. Linear optics fundamentals and linear optics with coupling
between degrees of freedom (Lebedev)

2. Linear optics measurements (closed orbit distortion, turn-by
turn) (Gianfelice-Wendt)

3. Non-linear dynamics and its measurements in Tevatron (Alexahin)

4. Impedances. (Burov)

5. Longitudinal instabilities

6. Transverse instabilities

-

8

9

Single and multiple IBS and gas scattering
Stochastic cooling and stacking
Stochastic cooling hardware and stochastic cooling measurements
10. Electron cooling and its fundamentals
11. Cooling and beam manipulations in Recycler
12. Antiproton production
13. Luminosity evolution in Tevatron
14. Beam-beam effects and their simulations
15. Instrumentation, feedbacks and their development for Run IT
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March 31, 2009
Lecture 1

Valeri Lebedev
Contents
B Equations of motion, Symplecticity condition, Liouville theorem
B Eigen-vectors and mode emittances of multidimensional motion,
B Parameterization of single dimension motion, Twiss parameters,
parameterization of multidimensional motion
B X-Y coupled motion, Edwards-Teng and extended Mais-Ripken
parameterizations
B Perturbation theory for symplectic motion
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Where coupling effects are important?
B Coupling build-in into design

¢ Electron cooler

¢ P1line (required by vertical dispersion match)
B Model without coupling is oo rough

¢ Tevatron

e large spread of skew-quadrupole component in dipoles

B "Real machine optics” represents measured coupling

¢ Debuncher

¢ Accumulator

¢ Recycler
B Coupling is not negligible in all other transfer lines and machines
What will be discussed
B X-Y coupling

¢ X-S coupling can be described the same way
B X-Y-S coupling is straight forward extension

¢ Many results of two dimensional coupling theory can be applied
directly
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Equations of motion
B |inearized equations of two dimensional motion

x”+(KX2+k)><+(N —%R’jy—Ry’zo ,

y”+(Ky2 —k)y+(N +%R’jx+ RX'=0

K., =eB, ,/Pc -dipole

(linear part of beam space charge force can be added too)

k =eG/Pc - quadrupole,
N =eG, / Pc - skew-quadrupole,
R=eB;/Pc - longitudinal magnetic field

From mathematics point of view:
It is a system of ordinary linear differential equations with
variable coefficients
The equations for x and y motions are closely coupled
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B Canonical variables

X = Rx are the canonical variables
Coincide with usual coordinates (x, 6., y, 6,) if Bs=0
y=y

¢ Canonical coordinates:

¢ Canonical momenta: Px

X | X
0, _ | Py

X = , X =
y y
_QY_ py

X=X
Ry py:9f+§x @%=Cﬂ 0 =gx)

R =

=0 ——

1

R/2

0
1
0

0

01

0
“R/2 0

1 0

0 1

“ds' Y ds

, R=eB,/Pc

¢ Here and below we put a cap above transfer matrices and vectors

related to the canonical variables.
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B Hamiltonian form of the motion equation
¢ In the general case the Hamiltonian of linearized motion can

R 1 A n
be presented as bilinear form: H = H(X,s)= Ehij ()XiX,

¢ Then, the motion equations are

X | [oH/op, | h, X. (0 1 0 O
N —0H / ox —h. X -1 0 0 O
i P _ _ hllAl — UHx , H:[hij]’ U=
ds| ¥y oH /op, h, X 0 0 0 1
P, | [-éHldy| [—hy% |0 0 -1 0

where U is called the unit symplectic matrix
B For the above equations of motion the Hamiltonian matrix is

2

KX2+k+RT 0 N ~R/2
H- 0 1 R/2 N 0
N R/2 Ky2—|<+T 0
| -R/2 0 0 1|
dx .
: : — = UHXx
¢ and their matrix form: ds
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Transfer matrix (linear map)
B Solution of system of four first order linear differential equations
can be presented as sum of 4 linearly independent vector-functions

x(s) | Xk(s)
dx(s)/ds| & |6,.(s)
= C.| ~
v | & 56
| dy(s)/ds 10,,(5)
Or in the vector form : x(s) = X(s)C
[ X(s) ]| c, | X(s) X(s) XK(s)  X(s) |
| dx(s)/ds e, < o | Ga(s) 0,(5) O5(s) 6,(5)
A AT R P R OB AC R AC B AC
| dy(s)/ds | c, | 10,,(s) 6,,(s) 0,,(s) 6,,(s)

B |et's express the solution through it's initial value (s = 0):
x(s) =M(0,5)x(0) |
Taking into account that x(0) = X(0)C we obtain

X(s)C = x(s) = M(0, s)x(0) = M(0, s)X(0)C

= ‘ M(0,5) =X(s)X(0) " | - M(0,s) is transfer matrix from s=0 to s
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Unit symplectic matrix

0 1 0 O
-1 0 0 O
U =
0 0 0 1
0 0 -1 0
B Antisymmetric
U=-U'
B Useful properties
U'U=UU =1 UU=-1
detU =1

a'Ua=0 for any vector a

B TIn the literature it is also denoted as S
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Symplecticity condition
B |agrange invariant

. . o dx .

¢ Remind that the equation of motion is: o UHXx
AT A

— i(AlTIJ;(z): —dxl Uf(z +§(1TU—dX2

=%, H'U'UX, +%, UUHX, =0
ds ds ds

and, consequently, X, UX, = const ‘
B Symplecticity condition
¢ Remind: transfer matrix for canonical variables %=M(0,s)x,
— %, U, =%'M(0,5)" UM(0,s)%, = const
¢ As the above equation is satisfied for any x; and X, it yields
M(0,s)" UM(0,5)=U = M(s,,s,)  UM(s,,s,)=U
e There 16 equations but only 6 are independent because
M(0,s)" UM(0,s) is antisymmetric

e i.e. there are six equations which bound transfer matrix
elements

= Only 10 of 16 fransfer matrix elements are independent
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B Properties of symplectic matrices
MUM=U |

U(..=..) —~  UM'UM=-I

(=M | UM'U=-M" |

M(...=...) —~  MUM'U=-I
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| iouville’s theorem

Transfer matrix determinant
Computing determinant of both sides of symplecticity condition

M(0,5)" UM(0,5) = U we obtain (det(M(0,s))f =1

Taking into account that M(0,0) =1 we ob’rain‘ (det(M(O, S)))=1
Liouville's theorem

I = [ dxde,dydo,
Vv

Prove that the phase volume, , is conserved in the course of

the motion, x(s) = M(0,s)x(0) . Then,
jﬁ(x’, g.Y',0,)
v o(X,0,Y,6,)
Liouville’s theorem is justified also in the general case of non-linear

motion: (det(M(O, S)»zl ‘
¢ It works even for case of the stochastic cooling
e Strong filamentation of the phase space
Next we will see that the symplecticity additionally results in
conservation of the mode emittances (analogs of x and y emittances)

I" = [ dxde/dy'de), = dxd,dydd, =[ det(M kixd6,dydd, =T
Vv’ Vv
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Eigen-vectors and eigen-values

B For circular accelerator the turn-by-turn particle positions can be
expressed through the eigen-vectors,

M{’k :ﬂ«ki}k ‘ , Wherle M:M(O’ L) and k — 1’ 2’ 3’ 4
4 R 4 I
X, zécki}k = Xn = kz_;/lk Ck Vi
—  Stability condition Ay <1

B Complex conjugate of the eigen-value equation results in that
the complex conjugate of eigen-vector is also eigen-vector with
complex conjugate eigen-value:

M = £,
B Product of eigen-values
det(M — AI)= A* +...+det(M)= 2" + ...+ det(M)= 2" +...+1
detM - A1) =(1- ) A=) A-4)A-4,)=2" +..+ LA, 4.4,
A AyAnhy =1

Comparing we obtain that

. Stability condition | A=t |

Lecture 1: Linear optics fundamentals and linear optics with coupling between degrees of freedom, Valeri Lebedev, Fermilab, March 31, 2009

14



B Eigen-values of stable motion
¢ For stable betatron motion
4=1  and
4 #*1 (integer and half-integer resonance condition)
¢ Four eigen-values split into fwo complex conjugate pairs
B Symplectic orthogonality of eigen-vectors
For any two eigen-vectors the symplecticity condition yields

0=19," UMY, - 4% )= (Mv, ] UMY, - 4.9 "UA, = (- 2.2, UV,

o L-2,4Uv, =0 |

That yields that for stable motion the only scalar product different
from zero is

| 9,U¥, 20

Note that it is purely imaginary:
(FUv) = (FUV) = VU = OV
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Eigen-vectors normalization

¢

We leave only two of four eigen-vectors in further consideration
e Two other are complex conjugate and can be omitted

v, Uv,==2i , v, Uv,=-2i |,
ATern A Teen

v, Uv, =0 , v, Uv,=0 ,
A Tern A +zoA

v, Uv, =0 , v, Uv, =0

For two top equations
e Factor of 2 sets correct relation to emittances and phase advances
e Sign "minus” determines which 2 of 4 eigen-vectors have to be used

Equations in the second line are actually identities
8 independent real variables uniquely determine the eigen-vectors
e 16 - 2 (arbitrary phases) - 2 (two top egs.)

- 4 (two bottom complex eqs.) = 8
Adding 2 betatron phases we obtain 10 independent real variables
describing the motion
- The same as for the transfer matrix elements considered above
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Beam ellipsoid in 4D phase space
B Turn-by-turn particle positions and angles at the lattice beginning
X = Re(ﬁe“"’l%l + Aze“"“ffz)
where real parameters, A1 A2 y1 and y» , are the betatron
amplitudes and phases.

V - Vl ,_Vl ’VZ ,_VZ

B |et us infroduce the following real matrix: [ } ‘

B Chosen normalization of eigen-vectors results in that V isa
symplectic matrix: ViUV =U
- V'=—Uuv'u
B Using matrix V allows one to rewrite the top equation in the
compact form: %=VAZ,

where
‘A 0 0 0 [ cosy, |
0 0 O - —sin
A - Al ! gA = l/ll
0O 0 A O Cos v,
0 0 0 A | —siny, |
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B Single particle phase space:
sY [ cosy, |

" _ —sin
A x=VAE, En= &
Cosy,

__Sin v, |

O Ensembl$ of particles:

[ CcOSw, COSy, |
X _ | =siny, cosy .
<& o S (Eg)=1
cosy, Siny,
| —siny, siny,

Vector ¢ defines sphere with unit radius in 4-D space

= % =VA¢Z defines 3D surface of 4D-ellipsoid contained all particles
B Standard form of surface parameterization is a bilinear form

Ex=1 |

(é?,g)=1, =— iT((\AfA)_l)T({IA)_lgzl

AN AN AN

==UVEV'U
= =diag(A 2 A AT AT
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Mode emittances and total beam emittance

B Symmetric matrix E uniquely determines the beam phase space
¢ It has 10 independent parameters

¢ It can be expressed through matrix Vand 2 amplitudes
(also 10 param.)

B 4D beam emittance and mode emi‘r’rances
¢ Inverting equation for ma’rr'lx we obtain E=A'AT=V'EV
¢ i.e. symplectic transform V reduces matrix E to its diagonal form

but does not change 4D volume of the ellipsoid because detV =1
¢ Innew coordina‘res
—~r 12

Ep X +E “—‘22 px + Hssy + *—*44 py =1

¢ Then 4D beam emittance (omit correction n°/2 for real 4D volume)

£y = L 1 =(AA) =
U JELEL SR, VetE)  \det(E)
1
Esp = 6,8, = — | g=A" , &=A"
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B Beam envelope bilinear form
¢ Summarizing above we conclude, if we know
e beam emittances
e eigen-vectors and, consequently, matrix v
¢ then the particle ellipsoid can be described as following:

XEx=1,
1/, 0O 0 0]
" ~ 0 1/¢ 0 0 [~
==UV ' v'u'
0 0 1lg, O
0 0 0 1/g,
B Symplectic transform/motion does not change mode emittances
c T o X,=Mp%, 2 T(" —‘1)Te. r —1lx _1
X, =X, = > X, (M, =My, X, =

AN A AN

= (Mlz_l)T =M, = (Ml;”l)T UVEV, UM, '=UV,EZV, U

N

Y~ A
12 1) UV, =M.,V
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Second order moments of the Gaussian distribution

B (Gaussian distribution function for coupled beam motion

) 1 1 orn.
f(x)= exp| —=X'=
(x) drtee, p( 2" X)
B The second order moments of the distribution
RR; = [R%,f (R = %%, exp(—%féﬁjdf(“

Pa

X,

2
ArceE,

Transform, ¥ =V 'X , reduces matrix E to its diagonal form and makes an

integration trivial
Finally one obtains

&, 0 0 O
. |0 0 0.
x=v| v
0 0 & O
0 0 0 &

¢ And, consequently,
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Finding Emittances and Eigen-vectors from X and =

b

B Solution of characteristic equation results in the mode emittances
¢ Consider equation det(E-i2U)=0 ‘
It has 4 roots: 4, =-4,=1/¢ and A, =-1,=1/¢,
¢ Proof:
det(E—i4U)=det{UVEV U —i2U)=det(& -ia UV UVU)=

det(é’—i/lU):(lz—ﬂz)[lz—f] -0

& &,

B Eigen-vectors of charact. eq. are equal to the motion eigen-vectors:

[é—'Uj%, -0
€

AN AN AN

¢ Proof: Rewrite Z=UVE'V'U" as EVU = UVZ' and multiply it by wu,
as result one obtains the above equation.
Here 1=1,2; w=[1 —-i 0 0] , w=[0 01 —if
and we also took into account that: Vu, =¥, , Uy =—lu, Eu =u,/¢g

]

B Similarly for the second order moments: ‘ (XU”EJ)QH =0
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nled Motion

Eigen-vectors and Beta-functions of Uncou

B Eigen-vectors:

| |0
v=| l+a|, V=| « 1
VA VB B
B Eigen-vectors symplectic orthogonality and normalization:
Q*Uﬁz{\/ﬁ "—“}{O 1} i+ |=-2i
\/E -1 0 _F '
v U,v=0
m Bilinear form
1+ 0 g_
ézwf’g 0 }w: # o
0 1l¢ a p
I &

¢ Courant-Snyder invariant

AT 2A 1+ a? o
X EX = X° +2X¢9—+92£=1 — &=
ep £ £

L+a’ X* + 200 + 67
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Eigen-vectors and Beta-functions of Coupled Motion
B Single-particle phase-space trajectory along the beam orbit

%(s) = M(0, s) Re(\/;l%le“wl + /e, v,e"? )
_ Re( Jev,(s)e @y [o Qz(s)e—i(mwz(s»)

vectors v,(s)and v,(s)are the eigen-vectors at coordinate s
y1 and y» are the initial phases of betatron motion
B Mais-Ripken parameterization
¢ The terms e“®and e ™** are introduced to bring the eigen-
vectors to the following standard form:

\ P (8) VB (s)e™:®
B I, () +a,,(s) _ U, (S) + &, (S) aiv2(s)

5 P (8) 3 P (8)

Vl(S) = meivl(s) ’ VZ(S) B W/ﬂZy(S)
iu, (s) +a2y(S)

U, (s) +ay, (S) e

1y (8) \ B2y (8)

¢ The sign of Vi and Vv, normalization determines the choice of
two of vectors out of two complex conjugate pairs; so that for

these vectors w ,u4 >0
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B (Generalized Twiss parameters (10 parameters):
t4() and 2(S) are the phase advances of betatron motion.
PudS), B1S), f2ds) and B2/(s) are the beta-functions;
aids), ap(s), azds) and az/s) are the alpha-functions
¢ Six real functions w(s), w(s), ws(s), ua(s), vi(s) and va(s) are
determined by the symplecticity conditions
e They immediately result in: t4=1- > , s = 1- 15 and w=us

—
ﬂlx ﬂZXeiV2
B i(l—u)+ ay, B U+ a,, oiv:
i\’ _ \/ ﬂl-x {/ _ A IBZX)
! lglyelv1 ’ ’ '\/ﬂZy
u+a,, it i(l—u)+ Ay,
\/ﬂly | ﬂZy |

¢ Parameters «(s), vi(s) and v,(s) are
determined by the rest of orthogonality conditions
B For uncoupled motion:
v=0 ,,3]},2,32)(: 0 , and Oy = O2x = 0
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B Solutions for «(s), vi(s) and va(s)

2 2
- A ( B 1
—KXZK‘yZ + K‘XZK‘yZ 1+ sz 5 (1—KX2Ky2) aivr = @ileh) _ A +! i, (L U)+Kx_1u
Ky — K, A, —ilx,(1-u)-x,"u
u= 2 2 ’ 1
1=, %, o _ it _ A il (-u)-x"u
o - -1
A +ilie, L—u)—x, ™0
1 1
N v1:n7r+§(v+—v_) . Vv, =mr+ = (v +v_)

A( = Kxalx — Kx_laZX y IBZX K —
where A = K0y — Ky_laly ’ ﬂZy

B Thus, for given a's and fs there are four SOILITIOHS I
¢ Two solutions for vand
¢ Two solutions for vi(s) and va(s) for each of two solutions for v

B Normally, O < ¢<1, and u can be considered as coupling strength

¢ Percentage of y-motion in the x-plane eigen vector {
and x-motion in y-vector . =2

B v and v are determined modulo 2, { Xiv} =
¢ that yields that v; and 12 are determined modulo . ke L)|:

¢ Reason: the mirror reflection does not change /s and \

a's but changes relative signs for xand y components
of eigen-vector = change of v and v, by 7.
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B Derivatives of the Tunes and Beta-Functions
A differential trajectory displacement related to the first eigen-vector

X(s+ds) = x(s) + x'(s)ds = x(s) + ( P, () +§ y)ds =

\/ETRG([ /—ﬁlx(s)+|:_ (1 U(;))‘("?lx(s) Zmewl(s)}dsle I(,ul(3)+1//1)J

Alternatively, the particle position can be expressed through the beta-

functions at the new coordinate s+ ds:
X(s +ds) = Re(\/&, 3, (s + ds)e (s te++) )

\/gilRe[Lq/,le(s ,B,le imdﬂjei(ul(s)w)J

¢ Comparing one obtains:

dB,, dp
d; =-2a,, +R./B, B, COSV, | ds” =-2a,, —R\/B, By, cOsV,
_ d d .

disy :1 u _B &sin v, Hy 9V, U +B Dy sinv,
ds B, 2\p. ds ds B, 2\5,
dﬂZy . 2 R dﬂZX _ 2 R

ds =L, — 1/ﬂ2xﬂ2y cosv, ds =20, + ﬂZxﬂZy cosv,
d :

Hp 17U 'Bzxsmv2 , du, dv, _ u R 'Bzysinv2
dS ﬂZy 2 IBZy dS dS IBZX 2 ﬂZx
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Main Properties of Mais-Ripken parameterization

For given eigen-vector there are unique set of generalized Twiss

parameters

For given o's and s there four solutions and at least two of three

parameters «(s), vi(s) and vz(s) have two be known
Single particle motion

5\((8) = Re( /‘91 Ql(s)e—i(l//ﬁm(s)) + /82 {,2 (S)e—i(y/z+y2(s)))
X(S) = Re(\/me_i(M(S)-Hh) +me—i(,u2(s)—v2(s)+z//2))

= y(s):Re( [e iy (S)e 0w 4 [ ﬂzX(S)e—i(uz(s)wg)) § 008

Beam sizes P
Oy = \/‘91181x + &, » |

o —Jslﬂmezﬂzy, Y \

_008
(xy) =0, —gl,/ﬂlxﬂly COSV, + &,/ Boy Boy COSV,

In vicinity of coupling resonance, vy~v, §
IBlX +182x ~ IBX() **"f"———ai 7777777777777

¢ ﬁly + ﬂZy ~ ﬂyO | 008+

Y
\/ Box e
JP1y€
0 0.=08
X
— ,Bzy.gz

¢ Coupling weakly affects beam size projections for &, ~¢,
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Examples of Generalized Beta-functions

Sun Apr 05 21:01:09 2009 OptiM - MAIN: - C:\VAL\Optics\Tevatron\Tevatron\Measurements\LowBeta\June24_2004

[m] 125

BETA_X&Y

o

0.5

PHASE/(2*PI)

-0.5

ludoon0neodnl

Sun Apr 05 21:01:30 2009 OptiM - MAIN: - C:\VAL\Optics\Tevatron\Tevatron\Measurements\LowBeta\June24_2004
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2
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Coupled beta-function in Tevatron (600 m in sector F)
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Sun Apr 05 21:06:32 2009 OptiM - MAIN: - C:\WVAL\Optics\Tevatron\Ecool\MI30_design_ALEXEY.opt
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0 q

0 0

(@] I L L o?
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Coupled beta-function in the FNAL E/ecfran cooler
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Edwards -Teng Parametrization
B The parametrization is based on a canonical transform R which

~ A~

reduces a 4x4 transfer matrix to its normal modes form M = RMR™

- P p ~ A 0
where M:qQ MZOB

B Teng suggested to parametrize a symplectic matrix R as follows:
5 {E cosg —Dsin ﬂ
Dsing  Ecos¢
where E is the unit 2x2 matrix, and D is a 2x2 symplectic matrix.
B 10 parameters:
¢ R is parametrized by four parameters: D,,D,,,D,, and ¢.
¢ A and B are parametrized by 3 parameters each S, o and .
B Eigen-vectors of the normal modes form
¢ Eigen vector definition, R*MR¥, = 4¥,,
¢ can be rewritten as Mv, = AV,
where the vector v, =Ry, is the eigen-vector of matrix M.
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B Equations to find Teng's parameters

Eight scalar equations and eight parameters (no betatron tunes)
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B Solutions for Teng's parameters
sm¢:iJG
ﬂlx alx
= , o, = ,
A 1-u Y o1-u
IBZy aZy
= , o, =
% 1-u > 1-u
atand - B,y a,, sinv, +ucosv, |
ﬂZX 1—U

sinv
b tan ¢ - \/ﬁlxﬂly l—

1
u

ctang =

COSv, (a2x (1_u)_0‘2y u)_Sin Vs (u(l_u)+a2xa2y)

(1_u)\/ﬂ2xﬂ2y

+a,, sinvy,

(B, ucosy
dtang=— ﬁlx 11—u
1y

¢ Four solutions for Teng's rotation angle ¢ but unique values

for S-functions.
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Betatron phase advance in Teng's representation

B The betatron motion in the normal modes representation is
X(s) = M(0, 5)X(0)

where
M(0, s) = R(s)M(0, s)R*(0)
B Phase advance of the betatron motion is determined by a standard
recipe
vi(s)e ™ = M(0,5)¥,(0)
Using the definition of matrix M(0,S) one can obtain from the above
equation
¥.(s)e ) = R(s)*M(0, s)R(0)¥, (0) = M(0, 5)¥, (0)
That coincides with betatron phase advance determined by
generalized Twiss functions
= The betatron phase advances for both parametrizations

are equal
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Transfer matrix between two points
B V-matrices of two points are related by transfer matrix
V S = M12V

¢ Here matrix S removes the betatron phase advance and
restores the eigen-vectors to their normal form

[ COSAp, SinAu, 0 0
- —SinAg,  COSAy, 0 0
0 0 COSAu, SinAwu,
0 0 —SINAu, COSAu,
¢ Mul’rlplymg this equation on both sides by, v,” =-uv,'U
results in

M,, =-V,SUV,"U
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Derbenev's vortex-to-plane transform

e Eigen-vectors of decoupled

motion in the coordinate system

rotated by 45 deg

e Rotational eigen-vectors

F, iF,
HEl
e Focusing system with 45

deg difference for X and
Y betatron phase
advances transforms
from one to another
distribution

N

Hy=H
py=p+ml2

\ i F, _ pix
>€ F ei;r/2 =€
2

R JA
\i/ga ; —ij/Lgl oy
N : rottion . 1 B o =2p
%E V2| A ’
0 ta
S VB
_ Skew-quadrupole
}Ienmd system \
o | /
P,
Uncoupled _ y
axial-symmetric ~ Rotational >
distribution distribution W

F2
iF,

Flat

distribution

e Mode emittances are conserved in the vertex-to-plane transform
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Tune Shifts due to Focusing Perturbations

Perturbation theory
B Unperturbed motion: Mv, =4, j=1.4

4
B Perturbed motion: (M+AM);’ Ay +AA IV, VJZVJ+Z_1:‘9U o & <<l, £ =0
~ e\ . 4 ~ R 4 A
B Linearizing: (M+AM)(V,-+Zsijvij=(zj+mj{vj+;gijvij,

(M /11) £ =(A;Lj1—AM)vJ.

ij i

i(/l ﬂ)gul (A/IJI_AM)QJ

i=1

B Eigen-values and eigen-vectors are complex conjugated. Reindexing

B, ¥, % %loln % ¥ %] results in two matrix equations

1 0 0 0 AL, A, — A, 0 0 0 &

v 0 4-4 O 0 0 | AN, V. 0 4L-4 0 0 £ |_
0 0 A -4, 0 £y 0 0 1 0 AL,
0 0 0 =2 || &a 0 0 0 -4 || & |

*

where: VC=[% v, v, Q2*J
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Tune Shifts due to Focusing Perturbations (2)

Perturbation theory (continue)

B V consists of symplectic vectors and its inversionis: V. =—

B Substituting one finally obtains

CAA 1 0 0 0

* 1
fa|__ 19 -4 ° ° luvuams
E41 2i | 0 0 (A4, - 4,) 0 : g '
e 0 0 0 (n-47)"
&, _(/12 B ﬂl)_l 0 0 0 |

* -1

1) 0 -2 0 O luvuamy
AL 2 o 0 1 0 ° i
24 0 0 0 (-4

B Multiplication both sndes by [ 0 0 0] results in correction factors

for eigen-values

Ad =

Ad, =

—i_ v, UAM ¥,
21

ER v, UAM ¥,
21
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Tune Shifts due to Focusing Perturbations (3)
Tune shifts due to quadrupole and skew-quadrupole errors

B Hamiltonian AH < ®,x* +20 xy +® y? 0 0 0 0
: ; - - |-®, 0 —®, O

B Transfer matrix: M =I+AM,, AM =| ~* =
—d, 0 —D, O

B FEigen-values corrections: M+AM=(1+ANM M => AM=AN M

AJ, = —% v,"U(AM M J3, = —% 3 UAM, ¥,
| |

AR, = —% %;U(AMQM)VZ = —% v, UAM, ¥,
| |

B Tune shifts

AQ. _ M AQ, = —— 3 'UAMY,
272' /Ii ) Az
AQ, = —— §,"UAMS,
dr
B Performing multiplications one finally obtains
1
A(?1 - E((Dxﬁlx + 2(I)s ﬂlxﬂly COS(Vl) + (Dyﬂly)
1
AQ, = E((DxﬁZX +20, '\/ﬁZxﬁZy cos(v,) + (DyﬂZy)
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Conclusions

B The same as for uncoupled motion
¢ Mode emittances and total emittance are conserved
¢ Twiss parameters and emittances determine the beam ellipsoid
in 4D phase space and vice-versa
¢ Twiss parameters of two points and betatron phase advances
determine corresponding eigen-vectors and transfer matrix
between these points
B There are 8 independent parameters which determine the eigen-
vectors
¢ General structure of eigen-vectors and motion is closely
coupled with the uncoupled case
B Both the extended Mais-Ripken and the Edwards-Teng
parameterizations have problems to obtain unique solutions
¢ Unique solution for eigen-vectors (Mais-Ripken)
¢ Unique solution for Twiss-parameters ( Edwards-Teng)
B Symplecticity of the motion enables to build effective perturbation
theory
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Appendix A

Explicit Expressions for Transfer Matrix, Bilinear Form
and Matrix of Second Order Moments
B Transfer matrix elements

M, = (1—u)cos s, +a,, Sin g1, +UCOS 11, +ax,, SN p1, (A.1.1)

Mlz = Sy SN, + By sinp, (A].Z)

M,, = ﬁlx[aly sin(zy +v;)+ucos(z +v; )]+ ﬁZx [azy sin(, —v,)+(1-u)cos(, —1,)] ,  (A.1.3)

MM = ﬂlxﬂly Sin(:ul +Vl)+\/ﬂ2xﬂ2y Sin(zuz _Vz) / (A14)

M, _ (-u) e, sin 4, e, sin g, (A.1.5)

M,, = (1—u)COS £, +UCOS 11, —at,, SIN g1, —at,, SIN 41, (A.1.6)
|-ty —uay, Jeoslas ) |, +ull-u)fsinly +v;)

)

LA (A.17)

[uazy —(1—U)0(2X]COS(,LL2 _Vz)_[azxazy +u(1_u)]Sin(:U2 _Vz) |

\Pox By
M,, = \/?[(1—@ cos(z4 +v;)—a, sin(z4 +vl)]+\/?[u cos(z, —v,)—a,, sin(u, —v,)| (A.1.8)

1x

Lecture 1: Linear optics fundamentals and linear optics with coupling between degrees of freedom, Valeri Lebedev, Fermilab, March 31, 2009 41



[%x sin(z, +v,)+ucos(i, +v,)] (A.1.9)

M., \r[%sm,ul —v,)+

:le:Bly Sln(:ul V1)+\/ﬂ2xﬂ2y Sm(:uz""/z / (Allo)
w5 = UCOS 2, +(1—U)COS 11, + sy, SIN 11, + ey, SiN 11y, (A.1.11)
My, = By, sinu, + B, sinu, (A.1.12)

o _lenu—(1-uler, |cod s —vi)[ey,en, +uld-u)]sin(zs - V)+

M,,
APy (A.1.13)

[(1—u)a2x —u%y]cos(,u2 +v2)—[a2Xa2y +u(1—u)]sin(,u2 +v2)

\/ﬂZxﬂZy
I\7I42:\/§[ucos(yl—vl)—aly sin(e, —v;)|+ ﬁzx[l U)cos(1, +1,) -, sin(, +v,)] , (A.1.14)

. u’+al, 1-u) +a?
My =- SIN 44y —

ly 2y

2y

sin u, (A.1.15)

~

M,, = Uucos u +(1-u)cos u, —a,, Sin u, —at,, Sinu, . (A.1.16)
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B Elements of bilinear form describing the particle ellipsoid in 4D

space:

C-u) t ey N u? + a,,’

[1D

1=
& Py &, By
- 181 :B
:22 — X + 2X ,
g &
N u’ +a1y2 (1-u)’ +a2y2
2, = +
33 ’
81ﬂ1y gzﬂZy
— ﬂly ﬂZ
2, = +—=
2 &,
- _ = _ iy oy
—12 — ~—21 — ’
& &,
2, 2, a,,
By =E2gpg=—"+—
g &
~ o~ ey, +ult-u)lcosv, +|a,, (1-u)—a,usiny,
S +

" gl\/ﬂlxﬂly

[aZXazy +u(1—u)]cos Vv, + [aZX(l—u)—azyu]Sin v,

82 \/ ﬂZXﬂZy

= & [Py a,cosv,+(1-u)siny, ) \B,, a, cosv,—usinv,
—14 T —41 —
ﬂlx ‘91 ﬂZX ‘92

(A.2.1)
(A.2.2)

(A.2.3)

(A.2.4)
(A.2.5)

(A.2.6)

(A.2.7)

(A.2.8)
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[1D

[l

[
|

) _\/ﬂTxO‘ly cos v, —usin V1+\/ﬂ72xa2y cosv, +(1-u)sinv, (A2.9)
By é1 Pay “
BBy €OV [Buboy oSV, (A.2.10)

[1D>
Il
[1D>

24 42
gl 82
B Second order moments:
5(11 =& i+ &L (A31)
X =Xy = =604, — &0, (A32)
. 2 2 2 2
5(22 =& 1-u) +a, T gzm / (A33)
ﬂlx ﬂZx
5(33 = glﬂly + gzﬁzy ' (A34)
5(34 = X43 = T8ty T &G, (A35)
. u? + a,,° 1-u) +a,,
Ry, LW e (A.3.6)
ﬂly ﬂZy
Xys = Xy = &4/ BBy COSV, + &,/ B, By, COSV, (A.3.7)
X, =X, =¢ P (usinv, —a,, cosv,)-e, Pax (@-u)sinv, +a,, cosv,) , (A.3.8)
ﬂly ﬁZy
% Y _ ﬂly . IBZy ;
X,, =X, =—¢& ﬁ—((l—u)sm v, +a,, CosSV, )+ &, ﬂ—(u sinv, —a,, cosv,) , (A.3.9)
1x 2X
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X, =X, e (aly(l—u)—alxu)sin Vv, +(u(1—u)+a1xaly)cos Vv, .\

VPl (A.3.10)

(azX(l— u)—azyu)sin v, + (u(l— u)+a2xa2y )COS v,

82 \/ﬁZxﬂZy
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