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1) Amplitude Modulation 
 
 
Carrier signal    )cos()( ccc tCtx Φ+= ω  
 
Modulation signal   )cos()( mm

AM
m tMtx Φ+= ω

 
For simplicity, we can assume 0=Φ=Φ mc  
 
Then, the modulated signal is given by: 
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Making use of the trigonometric identity ( ))cos()cos(
2
1coscos bababa −++= , we get 

( ) ( )tMtMtCty cmcmcAM )(cos
2

)(cos
2

)cos()( ωωωωω −+++=  

 
We see the carrier component cω and the two side bands, mc ωω + and mc ωω − . Because 
the sign of the amplitude of each sign band is the same, we refer to this modulation as an 
even function. 
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2) Frequency Modulation 
 
 
Carrier signal    )cos()( ccc tCtx Φ+= ω  
 
Modulation signal   )cos()( mm

FM
m tMtx Φ+= ω

 
For simplicity, we can assume 0=Φ=Φ mc  
 
Then, the modulated signal is given by: 
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M is the frequency deviation and mω is the modulation frequency. The modulation index 
is then defined as follows: 
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The modulated signal can now be expressed as  ( ))sin(cos)( thtCty mc ωω +=  
 
In our case, we are interested by small frequency deviations (e.g. several hundred mHz at 
a modulation frequency of several hundred Hz). This case ( mff <<Δ  or ) is 
referred to as narrow band FM. The expression of the modulated signal can be further 
expanded using the following trigonometric identity:   
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For , 1<<h ( ) 1)sin(cos ≈th mω and ( ) )sin()sin(sin thth mm ωω ≈ , so y(t) becomes to the 
first order approximation: 
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Using another trigonometric identity:  ( ))cos()cos(
2
1sinsin bababa +−−= , we 

have: 
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We clearly see the carrier with amplitude A, the lower side band with amplitude hC
2

and 

a negative sign (i.e. 180° phase offset), and the upper side band with amplitude hC
2

as 

illustrated below. Because the two secondary side bands have opposite phase, this 
modulation scheme is often referred to as an odd function. 
 
 C

A

hC/2 

hC/2 

ωc - ωm

ωc + ωmωc

 
 
 
 
 
 
 
 
 
 
 
 
Carson’s theorem states that 98% of the power of the FM signal is in the bandwidth 
defined as: 
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So in the case of narrow band FM, the modulation bandwidth is given by  mT fB 2≈
 



 
3) Phase Modulation 

 
 
We will demonstrate here that phase modulation is a special case of frequency 
modulation, in which the frequency modulation is given by the time derivative of the 
phase modulation. 
 
 
Carrier signal    )sin()( ccc tCtx Φ+= ω  
 
Modulation signal   )sin()( mm

PM
m tMtx Φ+= ω

 
For simplicity, we can assume 0=Φ=Φ mc  
 
Then, the modulated signal is expressed as: 
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The argument of the sine function can be expressed with the following integral form: 
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The modulated signal becomes: 
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As seen in section 2), this expression of yPM(t) is equivalent to a frequency modulated 
signal with modulation: 
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So, a phase modulation is a special case of a frequency modulation which modulation 

signal is the time derivative of the phase modulation, i.e. )()( tx
dt
dtx PM

m
FM
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