Run 2B Luminosi Measurement

Richard Partridge Brown University / SLAC for the DØ Luminosity Group

Introduction

- At ~13:43 on November 17, 2009, DØ changed it's luminosity measurement to implement a new evaluation of the "Luminosity Constant" that determines the luminosity normalization
- New Luminosity Constant provides a significant reduction in the DØ contribution to the luminosity uncertainty
- New Luminosity Constant also accounts for Run 2b detector changes (earlier studies demonstrated this is a small effect compared to uncertainties in the Run 2a Luminosity Constant)
- DØ also implemented an improved treatment of Luminosity Monitor backgrounds

Luminosity Constant

 Luminosity Constant is an effective cross section that relates the measured rate for N-S coincidences in Luminosity Monitor (LM) counters to the DØ luminosity

Luminosity Constant Pictorial Guide

Charge and Timing Distributions Tuned

- MIP peak used to normalize MC charge distribution
 - Discriminator threshold is 0.35 MIP
- MC timing distribution smeared to match data

LM Counter Multiplicity Distribution

- Significantly higher LM multiplicity observed in Run 2b
 - Set beam pipe material to tin to match observed multiplicity distribution
 - Be/Sn difference taken as a systematic uncertainty

LM Acceptance

- Simulate non-diffractive, single diffractive, and double diffractive processes using Pythia
 - Use Rick Field's Tune A parameter set (same as for Run 2a analysis)
- Count number of resulting MC hits in the north, south LM detectors
- Classify events based on whether they have >0 hits in N/S
- Errors shown are from MC statistics (~10K events / sample)

Acc	Non-Diffractive	Single Diffractive	Double Diffractive
N & S	$A_{nd} = 0.9924 \pm 0.0009$	$A_{sd} = 0.3263 \pm 0.0047$	$A_{dd} = 0.4996 \pm 0.0050$
N Only	$A_{nd}^N = 0.0048 \pm 0.0007$	$A_{sd}^N = 0.2236 \pm 0.0042$	$A_{dd}^{N} = 0.2027 \pm 0.0040$
S Only	$A_{nd}^S = 0.0026 \pm 0.0005$	$A_{sd}^{S} = 0.2250 \pm 0.0042$	$A_{dd}^{S} = 0.2120 \pm 0.0041$
Empty	0.0002 ± 0.0001	0.2251 ± 0.0042	0.0857 ± 0.0028

Non-Diffractive Fraction f_{nd}

- Determine non-diffractive fraction by fitting the observed ratio of single-sided / double-sided beam crossings
 - Single sided events are predominantly from diffractive processes
- Development of a hardware histogramming capability in the LM electronics has allowed a substantial improvement in the Luminosity Constant precision
 - Allows high statistics 2D multiplicity distributions to be acquired
 - Statistics increased by 3 orders of magnitude
 - Much better understanding and treatment of LM background

Example 2D Multiplicity Histogram

Out-of-Time Background

There is a well established out-of-time background

Source of background is not clear

- Correlates with luminosity ⇒ byproduct of previous collisions
- Background grows with lower threshold $\Rightarrow \sim 1$ MeV of energy deposit
- Slow neutrons? Activation?

Background Rate in Tick 6

Background rate scales linearly with luminosity
N-S rate consistent with random coincidences

Effective Background Cross Section

- Background can be taken as an effective cross section
 - BG is tick dependent due to cumulative effect of previous beam xings
 - See DØ Note 5946 for further details on background study

Richard Partridge

Unfolding BG Multiplicty Distribution

What we measure in our data is the convolution of the multiplicity distributions for signal and background

$$D_{ij} = \sum_{\substack{l=0\\m=0}}^{\sum} \sum_{\substack{p=0\\m=0}}^{\sum} S_{lm} B_{pq} f_{lpi} f_{mqj} \Theta(l+p-i) \Theta(m+q-j)$$

$$f_{lpi} = \frac{l! p! (N-l)! (N-p)!}{(l+p-i)! (i-p)! (i-l)! (N-i)! N!}$$

- D_{ij} Observed probability for having *i* north hits and *j* south hits
- S_{lm} Probability of having *l* north signal hits and *m* south signal hits
- B_{pq} Probability of having p north BG hits and q south BG hits
- f_{lpi} Probability of having i counters hit by *l* signal hits and *p* BG hits
- Solve for the signal multiplicity distribution S_{lm}
 - See DØ Note 5904 for further details on BG unfolding procedure

Example Unfolded Multiplicity Distribution

Monte Carlo Data

Example Unfolded Multiplicity Distribution

Monte Carlo Data

Non-Diffractive Fraction Measurements

- Run 2a: $f_{nd} = 0.687 \pm 0.044$ (stat. + syst.)
- Run 2b: $f_{nd} = 0.668$ (stat. < 0.001; syst. propagated to σ_{LM})

North ND Fraction
South ND Fraction

Luminosity Constant

Luminosity Constant Uncertainty

Source	Uncertainty
Inelastic Cross Section	±1.91 mb
Single Diffractive Fraction	±0.43 mb
Time Variation / Radiation Damage	±0.24 mb
GEANT Energy Cutoffs	±0.24 mb
Monte Carlo Material Model	±0.16 mb
Light Collection / Radiation Damage	±0.09 mb
North / South Difference	±0.08 mb
Luminosity Dependence	±0.08 mb
Monte Carlo Statistics	±0.06 mb
PDF Choice	±0.06 mb
Pythia Tune	±0.04 mb
Background Unfolding	±0.03 mb
GEANT Hadronic Model	±0.03 mb
Seasonal Timing Variation	±0.02 mb
Charge Threshold	±0.01 mb

$\sigma_{LM} = 48.3 \pm 2.0 \text{ mb}$ (4.2% relative error)

Top 5 Uncertainties

- Inelastic cross section 1.91 mb
 - Set by CDF / DØ agreement on to average CDF / E811 cross sections
- Single diffractive fraction 0.43 mb
 - Single diffractive fraction varied by 0.57 ± 0.21 (same as 2a analysis)
 - Provides substantial, but not implausible, variation in σ_{sd}
- Time variation / Radiation Damage 0.24 mb
 - Assign an 0.5% uncertainty due to time-variation in lumi measurement
 - Periodic PMT high voltage changes made to compensate for radiation damage change luminosity by <0.5%</p>
- GEANT energy cutoffs 0.24 mb
 - Effect of running the MC with lower energy cutoffs
- Monte Carlo material model 0.16 mb
 - Effect of changing beam pipe material from Beryllium to Tin
- All other systematic errors < 0.1 mb

Change in Measured Luminosity

- Using Run 2b Luminosity Constant for Run 2b data reduces measured luminosity by 0.6%
- Improved background subtraction reduces measured luminosity by an additional 0.3% - 0.7%

Run 2b Luminosity Constant Summary

The Run 2b Luminosity Constant is found to be:

 $\sigma_{LM} = 48.3 \pm 1.9 \pm 0.6 \,\mathrm{mb} \,(\mathrm{Run}\,2\mathrm{b})$

- ¹st error correlated with CDF; 2nd error specific to DØ measurement
- Total uncertainty decreased from 6.1% to 4.2%
 - DØ-specific uncertainty decreased from 4.6% to 1.3%
- Implementation of the new Luminosity Constant and improved background treatment reduce the DØ luminosity measurement by 0.9% - 1.1%
- Stability of DØ luminosity estimated to be ±0.5%
 - PMT HV changes and scintillator replacement compensate for radiation damage and PMT aging
 - Stability checked by measurements of forward muon yield, HV and threshold scans, and cross check with alternative luminosity measures