

Optical Stochastic Cooling in Tevatron

Valeri Lebedev Fermilab

> Accelerator Physics seminar Fermilab June 1, 2010

<u>Objectives</u>

- Extension of Tevatron operation to 2014
- Are there luminosity upgrades?
- Can the Optical Stochastic Cooling (OSC) help?
 <u>Outline</u>
- Tevatron luminosity and its evolution
- Requirements to the cooling
- Optical stochastic cooling principles
- Damping rates computation and optimization
- Optimization and efficiency of laser kick
- Requirements to the laser power
- Conclusions

<u>Tevatron Luminosity</u>

- All planned luminosity upgrades are completed in the spring of 2009
- From Run II start to 2009 the luminosity integral was doubling every 17 months
- Since 2009 average luminosity stays the same ~51 pb⁻¹/week
 - The average luminosity is limited by the IBS
 - Larger beam brightness results in faster luminosity decay
 - It is impossible to make significant (~2 times) average luminosity increase with one exception - The beam cooling in Tevatron
 - 10-20% is still possible (new tunes, larger intensity beams)

Luminosity Evolution for Present Stores (Store 6950)

- About 10% of luminosity integral is lost due to beam-beam
- IBS is the main mechanism causing fast luminosity decrease
 - Presently, there are no means to reduce IBS in Tevatron
- About 40% of pbars are burned in luminosity
 - It is the second leading reason of luminosity decrease

Luminosity Evolution with Moderate Cooling

Cooling rate is limited by ξ_{BB} of 0.02
 1.58 times increase of luminosity integral
 63% of pbars are burned in luminosity
 Much smaller luminosity variations

Optical stochastic cooling in Tevatron, Valeri Lebedev, June 1, 2010

Time, hour

_

Luminosity Evolution with Aggressive Cooling

Requirements to the Beam Cooling

- Cooling time has to to be varied during the store independently for protons and pbars and transverse and longitudinal planes
 - Beam overcooling results in
 - Particle loss due to beam-beam (transverse overcooling)
 - Longitudinal instability (longitudinal overcooling)
- Simple estimate of required bandwidth based on (λ=2 W/N) results in ~200 GHz
 - Well above bandwidth of normal stochastic cooling
 - Only optical stochastic cooling has sufficient bandwidth
- Cooling times (in amplitude):
 - Protons: L 4.5 hour; \perp 8 hour
 - Antiprotons: L 4.5 hour; \perp 1.2 hour
- Tevatron has considerable coupling and all transverse cooling can be applied in one plane
 - It requires doubling hor. cooling decrement:
 - I.e. for protons $\lambda_s = \lambda_x = 4.5$ hour

Optical Stochastic Cooling

- Suggested by Zolotorev, Zholents and Mikhailichenko (1994)
- Never tested experimentally
- OSC obeys the same principles as the microwave stochastic cooling, but exploits the superior bandwidth of optical amplifiers ~ 10^{14} Hz
- Undulator can be used as pickup & kicker
- Pick-up and Kicker should be installed at locations with nonzero dispersion to have both \product and L cooling.

MIT-Bates Proposal for Tevatron (2007)

OSC and Tevatron Luminosity

How to increase luminosity (peak and integrated) ?

OSC provides possible "damping" to the 1 TeV p & pbar beams. Damping on: $\varepsilon_p, \varepsilon_a, \sigma_z$ Could reduce N_p, N_a losses

Fermilab. November 14, 2007

MIT-Bates Proposal (continue)

(conceptual design)

F. Wang

<u>MIT-Bates Proposal (continue)</u>

F. Wang

MIT-Bates Proposal (continue)

Cooling Estimates

	Tevatron	Bates	
Gamma	1045 (980 GeV)	587 (0.3GeV)	
Bunch length (m)	0.57	0.025	
Particle/bunch	2.5E11	1.0E8	
Bunch number	36 12		
Laser λ (μ m)	1.98	2.06	
Undulator period (m) / length (m)	2.7/27	0.2/2	
Undulator parameter K	1.1	3.5	
Undulator radiation/pulse (pJ)	222	0.13	
Average radiation power (μW)	381	2.5	
Optical power limit (W)	20/200	5 (Not a limit)	
Optical power gain	4.84E4 / 5.25E5	1750	
Laser output/pulse (µJ)	11.6 / 116	0.23 nJ	
Damping time (hours)×2	2×2 / 0.6×2	0.14 second	

F. Wang

Fermilab. November 14, 2007

15

Questions to be Answered

- Do we have a fast way (2-3 years) of OSC implementation in Tevatron?
- What is the optimal optics and how to get to it?
- What is the optimal wiggler?
- What is the laser power?

Damping Rates

- The optics design will be significantly simplified if the damping rates can be expressed through beta-functions, dispersions and their derivatives
- The sequence is
 - Express transfer matrices (6x6) through Twiss-parameters at kicker and pickup
 - Find eigen-values and eigen-vectors of the ring without cooling
 - Using perturbation theory find damping decrements
 - Determine the cooling range in amplitudes
 - Correction factors for the finite amplitude particles

Transfer Matrix Parameterization

- Vertical plane is uncoupled and we omit it in further equations
- Matrix from point 1 to point 2

$$\mathbf{M} = \begin{bmatrix} M_{11} & M_{12} & 0 & M_{16} \\ M_{21} & M_{22} & 0 & M_{26} \\ M_{51} & M_{52} & 1 & M_{56} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} x \\ \theta_x \\ s \\ \Delta p / p \end{bmatrix}$$

 $M_{16} \& M_{26} \text{ can be expressed}$ $\frac{M_{16} \& M_{26} \text{ can be expressed}}{M_{10} \text{ dispersion}}$ $\frac{M_{11} M_{12} M_{16}}{D_1} [D_2]$

$$\begin{bmatrix} M_{11} & M_{12} & M_{16} \\ M_{21} & M_{22} & M_{26} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} D_1 \\ D_1' \\ 1 \end{bmatrix} = \begin{bmatrix} D_2 \\ D_2' \\ 1 \end{bmatrix}$$

$$M_{11} = \sqrt{\frac{\beta_2}{\beta_1}} (\cos \mu + \alpha_1 \sin \mu)$$
$$M_{22} = \sqrt{\frac{\beta_1}{\beta_2}} (\cos \mu - \alpha_2 \sin \mu)$$
$$M_{12} = \sqrt{\beta_1 \beta_2} \sin \mu$$
$$M_{21} = \frac{\alpha_1 - \alpha_2}{\sqrt{\beta_1 \beta_2}} \cos \mu - \frac{1 + \alpha_1 \alpha_2}{\sqrt{\beta_1 \beta_2}} \sin \mu$$

$$M_{16} = D_2 - M_{11}D_1 - M_{12}D_1'$$
$$M_{26} = D_2' - M_{21}D_1 - M_{22}D_1'$$

$$M_{51} = M_{21}M_{16} - M_{11}M_{26}$$
$$M_{52} = M_{22}M_{16} - M_{12}M_{26}$$

=> All matrix elements can be expressed through $\beta, \alpha, D, D', \eta_{1\rightarrow 2}$

=>

Transfer Matrix Parameterization (continue)

Partial momentum compaction and slip factor (from point 1 to point 2) are related to M₅₆

$$\Delta s_{1\to 2} \equiv 2\pi R \eta_1 \frac{\Delta p}{p} = M_{51} D_1 \frac{\Delta p}{p} + M_{52} D_1' \frac{\Delta p}{p} + M_{56} \frac{\Delta p}{p} + \frac{1}{\gamma^2} \frac{\Delta p}{p}$$

• Further we assume that v = c, i.e. $1/\gamma^2 = 0$ and $\eta_1 = -\alpha_{1 \rightarrow 2}$.

$$\eta_1 = \frac{M_{51}D_1 + M_{52}D_1' + M_{56}}{2\pi R}$$

- That results in η
 - Note that M_{56} sign is positive if a particle with positive Δp moves faster than the reference particle

Damping Rates of Optical Stochastic Cooling

Longitudinal kick

$$\frac{\delta p}{p} = \kappa \Delta s = \kappa \left(M_{1_{51}} x_1 + M_{1_{52}} \theta_{x_1} + M_{1_{56}} \frac{\Delta p}{p} \right)$$

Or in the matrix form: $\delta \mathbf{x}_2 = \mathbf{M}_c \mathbf{x}_1$

 M_1 - pickup-to-kicker matrix M_2 - kicker-to-pickup matrix $M = M_1M_2$ - ring matrix

 $\mu = \mu_1 + \mu_2$

Find the total ring matrix related to kicker

$$\mathbf{M}\mathbf{v}_k = \lambda_k \mathbf{v}_k$$

 $\mathbf{M}_{tot}\mathbf{x}_2 = \mathbf{M}_1\mathbf{M}_2\mathbf{x}_2 + \mathbf{\delta}\mathbf{x}_2 = \mathbf{M}_1\mathbf{M}_2\mathbf{x}_2 + \mathbf{M}_c\mathbf{x}_1 = (\mathbf{M}_1\mathbf{M}_2 + \mathbf{M}_c\mathbf{M}_2)\mathbf{x}_2$

$$\Rightarrow \qquad \mathbf{M}_{tot} = \mathbf{M} + \Delta \mathbf{M}_c \qquad \text{where} \qquad \mathbf{M} = \mathbf{M}_1 \mathbf{M}_2 , \quad \Delta \mathbf{M} = \mathbf{M}_c \mathbf{M}_2$$

Perturbation theory yields that the tune shifts are:

$$\delta Q_{k} = \frac{1}{4\pi} \mathbf{v}_{k}^{+} \mathbf{U} \mathbf{M}_{c} \mathbf{U} \mathbf{M}_{1}^{T} \mathbf{U} \mathbf{v}_{k} = \frac{\kappa}{4\pi} \mathbf{v}_{k}^{+} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ M_{1_{26}} & -M_{1_{16}} & 0 & M_{1_{56}} \\ 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{v}_{k}$$

Damping Rates of Optical Stochastic Cooling (continue)

Expressing matrix elements and eigen-vectors through Twiss parameters one obtains the cooling rates

$$\begin{split} \lambda_{1} &= -\frac{\kappa}{2} \Bigg[D_{1} D_{2} \frac{(1 + \alpha_{1} \alpha_{2}) \sin \mu_{1} + (\alpha_{2} - \alpha_{1}) \cos \mu_{1}}{\sqrt{\beta_{1} \beta_{2}}} - D_{1}' D_{2} \sqrt{\frac{\beta_{1}}{\beta_{2}}} (\cos \mu_{1} - \alpha_{2} \cos \mu_{1}) \\ &+ D_{1} D_{2}' \sqrt{\frac{\beta_{2}}{\beta_{1}}} (\cos \mu_{1} + \alpha_{1} \sin \mu_{1}) + D_{1}' D_{2}' \sqrt{\beta_{1} \beta_{2}} \sin \mu_{1} \Bigg] \\ \lambda_{2} &= -\frac{\kappa}{2} M_{1_{56}} - \lambda_{1} = -\pi \kappa R \eta_{1} \end{split}$$

The bottom equation can be directly obtained from the definition of the partial slip factor.

The above equations yield that the sum of the decrements is

$$\lambda_1 + \lambda_2 = -\frac{\kappa}{2} M_{1_{56}}$$

Sample Lengthening on Pickup-to-Kicker Travel

Zero length sample lengthens on its way from pickup-to-kicker

$$\sigma_{\Delta s}^{2} = \int \left(M_{1_{51}} x + M_{1_{52}} \theta_{x} + M_{1_{56}} \widetilde{p} \right)^{2} f(x, \theta_{x}, \widetilde{p}) dx d\theta_{x} d\widetilde{p} , \quad \widetilde{p} = \frac{\Delta p}{p}$$

Performing integration one obtains for Gaussian distribution

$$\sigma_{\Delta s}^{2} = \sigma_{\Delta s \varepsilon}^{2} + \sigma_{\Delta s p}^{2}$$

$$\sigma_{\Delta s \varepsilon}^{2} = \varepsilon \left(\beta_{p} M_{1_{51}}^{2} - 2\alpha_{p} M_{1_{51}} M_{1_{52}}^{2} + \gamma_{p} M_{1_{52}}^{2}\right)$$

$$\sigma_{\Delta s p}^{2} = \sigma_{p}^{2} \left(M_{1_{51}} D_{p} + M_{1_{52}} D'_{p} + M_{1_{56}}^{2}\right)^{2}$$

Both Δp/p and ε contribute to the lengthening
 Expressing matrix elements through Twiss parameters and assuming all derivatives (D & β) equal to zero[†] one obtains

$$\sigma_{\Delta s}^{2} = \varepsilon \left(\frac{D_{k}^{2}}{\beta_{k}} + \frac{D_{p}^{2}}{\beta_{p}} - \frac{2D_{k}D_{p}}{\sqrt{\beta_{k}\beta_{p}}} \cos \mu_{1} \right) + \sigma_{p}^{2} \left(M_{1_{56}} - \frac{D_{k}D_{p}}{\sqrt{\beta_{k}\beta_{p}}} \sin \mu_{1} \right)$$

<u>Cooling Range</u>

The cooling force depends on Δs nonlinearly $\frac{\delta p}{p} = \frac{\Delta E_{\max}}{E} \sin(k \, \delta s) = \frac{\Delta E_{\max}}{E} \sin(a_x \sin(\psi_x) + a_p \sin(\psi_p))$

where a_x & a_p are the lengthening amplitudes due to \perp and L motions measured in units of laser phase ($a = k \delta s$)

The form-factor for damping rate of longitudinal cooling for particle with amplitudes $a_x \& a_p$

$$F_{2}(a_{x}, a_{p}) = \frac{2}{a_{p}} \oint \sin\left(a_{x} \sin\psi_{x} + a_{p} \sin\psi_{p}\right) \sin\psi_{p} \frac{d\psi_{x}}{2\pi} \frac{d\psi_{p}}{2\pi}$$

$$F_{2}(a_{x}, a_{p}) = \frac{2}{a_{p}} J_{0}(a_{x}) J_{1}(a_{p})$$
Similar for transverse motion
$$F_{1}(a_{x}, a_{p}) = \frac{2}{a_{x}} J_{0}(a_{p}) J_{1}(a_{x})$$
Damping requires both lengthening amplitudes be smaller $\mu_{0} \approx 2.405$

<u>Cooling of the Gaussian beam</u>

Averaging the cooling form-factors for Gaussian distribution can be presented in the following form

$$F_{1G}(k\sigma_{\Delta s\varepsilon}, k\sigma_{\Delta sp}) = \frac{1}{2k^2 \sigma_{\Delta s\varepsilon}^2} \int_0^\infty a_x^2 F_1(a_x, a_p) \exp\left(-\frac{a_x^2}{2k^2 \sigma_{\Delta s\varepsilon}^2} - \frac{a_p^2}{2k^2 \sigma_{\Delta sp}^2}\right) \frac{a_x da_x a_p da_p}{k^4 \sigma_{\Delta s\varepsilon}^2 \sigma_{\Delta sp}^2}$$

Integration yields

$$F_{1G}(k\sigma_{\Delta s\varepsilon}, k\sigma_{\Delta sp}) = F_{2G}(k\sigma_{\Delta s\varepsilon}, k\sigma_{\Delta sp}) = \exp\left(-\frac{k^2 \sigma_{\Delta sp}^2}{2}\right) \exp\left(-\frac{k^2 \sigma_{\Delta s\varepsilon}^2}{2}\right)$$

- Good beam lifetime requires the cooling force to be positive for large amplitude particles
- Assuming that cooling becomes zero at 4σ for both planes
- $\Rightarrow \quad k \sigma_{\Delta sp} = k \sigma_{\Delta s\varepsilon} = \mu_0 / 4 \approx 0.6$
- ⇒ Nonlinearity of cooling force results in the cooling force reduction by factor $F_{1G}(\mu_0 / 4, \mu_0 / 4) = F_{2G}(\mu_0 / 4, \mu_0 / 4) \approx 0.697$

Cooling Parameters Optimization

Eqs. for the damping rates and the sample lengthening at pickup-to-kicker travel are simplified if $\alpha_p = \alpha_k = D'_p = D'_k = 0$

$$\lambda_{1} = -\frac{\kappa}{2} \frac{D_{1}D_{2}}{\sqrt{\beta_{1}\beta_{2}}} \sin \mu_{1}$$

$$\lambda_{2} = -\frac{\kappa}{2} \left[M_{1_{56}} - \frac{D_{1}D_{2}}{\sqrt{\beta_{1}\beta_{2}}} \sin \mu_{1} \right]$$

$$\sigma_{\Delta s}^{2} = \varepsilon \left(\frac{D_{k}^{2}}{\beta_{k}} + \frac{D_{p}^{2}}{\beta_{p}} - \frac{2D_{k}D_{p}}{\sqrt{\beta_{k}\beta_{p}}} \cos \mu_{1} \right) + \sigma_{p}^{2} \left(M_{1_{56}} - \frac{D_{k}D_{p}}{\sqrt{\beta_{k}\beta_{p}}} \sin \mu_{1} \right)$$

One can see that for fixed decrements a minimization of sample lengthening requires $D_k^2 / \beta_k = D_p^2 / \beta_p$ \Rightarrow Ratio of cooling decrements bounds up D^2 / β and $M_{1_{56}}$:

$$\frac{D^2}{\beta} \sin \mu_1 = \frac{\lambda_1}{\lambda_1 + \lambda_2} M_{156}$$

$$\implies \sigma_{\Delta s}^2 = 2\varepsilon M_{156} \frac{\lambda_1}{\lambda_1 + \lambda_2} \tan \frac{\mu_1}{2} + \sigma_p^2 M_{156}^2 \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^2$$

Optical stochastic cooling in Tevatron, Valeri Lebedev, June 1, 2010

Requirements
$$k\sigma_{\Delta s\varepsilon} = k\sigma_{\Delta sp} = \mu_0 / n_\sigma \xrightarrow{n_\sigma = 4} 0.601$$
 yields
 $2\varepsilon M_{156} \frac{\lambda_1}{\lambda_1 + \lambda_2} \tan \frac{\mu_1}{2} = \sigma_p^2 M_{156}^2 \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^2 = \left(\frac{\lambda_w}{2\pi} \frac{\mu_0}{n_\sigma}\right)^2, \quad \lambda_w = \frac{2\pi}{k}$

The solution is

$$\tan \frac{\mu_1}{2} = \frac{\mu_0}{n_\sigma} \frac{\sigma_p \lambda_w}{4\pi\varepsilon} \frac{\lambda_2}{\lambda_1}$$
$$M_{1_{56}} = \frac{\mu_0}{n_\sigma} \frac{\lambda_w}{2\pi\sigma_p} \frac{\lambda_1 + \lambda_2}{\lambda_2}$$
$$\frac{D^2}{\beta} = \frac{\varepsilon}{\sigma_p^2} \left(\frac{\lambda_1^2}{\lambda_2^2} + \frac{\sigma_p^2}{4\varepsilon^2} \left(\frac{\mu_0}{n_\sigma} \frac{\lambda_w}{2\pi}\right)^2\right)$$

For $\lambda_w = 12 \ \mu m$, $\varepsilon_{n95} = 20 \ mm$ mrad, $\sigma_p = 1.2 \cdot 10^{-4}$, $n_\sigma = 4$ and $\lambda_1 = \lambda_2$ one obtains the optimal parameters

- $\mu_{1_{opt}}/2\pi = 6.88 \cdot 10^{-3}$
- $M_{156} = 1.91 \text{ cm}$
- $D^2/\beta = 22.1 \text{ cm}$

 $(\beta = 50 \text{ m}, D = 3.3 \text{ m})$

- Tough requirements on the betatron phase advance ($\Delta v_1 \sim 10^{-3}$)
 - Hardly possible for $\lambda_w = 2 \mu m (\Delta v_1 \sim 2 \cdot 10^{-4})$

Combinations of Optics Parameters for Optimal Cooling

 $D_1=D_2=D$, $D^2/\beta=22.1$ cm, $\delta v_1=6.88 \cdot 10^{-3}$

ν ₁ =μ ₁ /2π	<i>M</i> ₁₅₆ [cm]	
n - δν ₁	-1.91	
n+ δν ₁	1.91	

$D_1 = -D_2 = D$, $D^2/\beta = 22$ cm, $\delta v_1 = 6.88 \cdot 10^{-3}$

ν ₁ =μ ₁ /2π	<i>M</i> ₁₅₆ [cm]
n+1/2- δv_1	-1.91
n+1/2+ δν ₁	1.91

Requirements to the System Stability

- The major limitations on system stability come from
- Relative change path length for the beam and the light
 - Cooling force $\propto F(a, \delta a) \equiv \frac{2}{a} J_1(a) \cos(\delta a)$, $\delta a = k \delta L$

Reduces the force but does not change cooling acceptance

 \Rightarrow k δ L < 0.5, i.e. δ L ~ 1 μ m (λ_w =12 μ m, 10% force reduction)

- No additional requirements for high frequency jitter
- Changes of cooling rates due to optics variations

$$\lambda_{1} = -\frac{\kappa}{2} \left(D_{2} M_{1_{2,6}} - D_{2}' M_{1_{1,6}} \right)$$
$$\lambda_{2} = -\frac{\kappa}{2} \left(-D_{2} M_{1_{2,6}} + D_{2}' M_{1_{1,6}} + M_{1_{5,6}} \right)$$

- External (changes in kicker dispersion) $_{\circ \Delta D/D < 5-10\%}$ Is not expected to be a problem
- Internal (pickup-to-kicker transport matrix)
 - \circ Looks extremely sensitive: $\Delta v_1 \sim 10^{-3}$ is required
 - Additional insight is needed

<u>Longitudinal Kick by E.-M. Wave</u>

Electric field of e.-m. wave focused at z=0 to the rms size σ_{\perp}

$$E_{x}(x, y, z, t) = \operatorname{Re}\left(E_{0}e^{i(\omega t - kz)}\frac{\sigma_{\perp}^{2}}{\sigma^{2}(z)}\exp\left(-\frac{1}{2}\frac{x^{2} + y^{2}}{\sigma^{2}(z)}\right)\right)$$
$$E_{y}(x, y, z, t) = 0$$

 $E_{z}(x, y, z, t) = \operatorname{Re}\left(iE_{0}e^{i(\omega t - kz)}\frac{\sigma_{\perp}^{2}x}{k\sigma^{4}(z)}\exp\left(-\frac{1}{2}\frac{x^{2} + y^{2}}{\sigma^{2}(z)}\right)\right)$ $E_{0} = \sqrt{\frac{8P}{c\sigma^{2}}}, \quad \sigma^{2}(z) = \sigma_{\perp}^{2} - i\frac{z}{k}, \quad k = \frac{2\pi}{\lambda_{w}}$

The beam is deflected in the x-plane by wiggler magnetic field

• That results in the beam energy change $\Delta E = e \int (\mathbf{E} \cdot \mathbf{v}) dt$

$$\Delta \mathbf{E} = eE_0 \int \operatorname{Re}\left\{ \left(\frac{dx}{dz} \frac{\sigma_{\perp}^2}{\sigma^2(z)} + \frac{i\sigma_{\perp}^2 x}{k\sigma^4(z)} \right) \exp\left[-\frac{1}{2} \frac{x^2 + y^2}{\sigma^2(z)} + ik \left(\frac{z}{2\gamma^2} + \frac{1}{2} \int_0^z \left(\frac{dx}{dz'} \right)^2 dz' \right) + i\psi \right] \right\} dz$$

where ψ is the accelerating phase ($\Delta E = 0$ for $\psi = 0$) and $\frac{1}{2}\int_{0}^{z} \left(\frac{dx}{dz'}\right)^{2} dz'$ represents the path length difference between light and beam introduced by wiggler (relative to wiggler center)

<u>Energy Kick in Dipole Wiggler</u>

- Wiggler consists of positive and negative dipoles which are immediately followed by dipole of the same field for further separation of beams
 - Dipole length, σ_{\perp} and the beam centroid offset are adjusted to maximize the kick
 - σ_{\perp} is much larger than the beam transverse size
- Because of tighter light focusing the kick in a dipole is only marginally lower than in the 3 dipole wiggler

Optical stochastic cooling in Tevatron, Valeri Lebedev, June 1, 2010

Energy gain [$\forall i \sqrt{W}$]

Energy Kick in Dipole Wiggler

- Both E_x and E_z fields contribute to the kick
 - That allows one to get additional kick in the case of single dipole
- Kick in 4 T dipole is 64% of the 5 dipole 2T wiggler
 - Length of 5 dipoles is 27.5 m
 - The total length of 5 dipole system determined by beam separation is ~40 m
 - Taking into account available space and comparatively high kick efficiency in a dipole as well as other limitations it looks possible to use a standard Tevatron dipole instead of wiggler

Energy gain $[\forall \sqrt{W}]$

starting from wiggler center 5 dipole wiggler

Comparison of Different Wiggler Types

- For large wiggler period the wiggler consisting of dipoles is easier to make than a usual harmonic wiggler
 - \blacklozenge Little loss in efficiency is compensated by shorter length Helical dipole wiggler is $\sim\!\!\sqrt{2}$ time more efficient

Comparison of wiggler parameters for $\lambda_w = 12 \ \mu m$ and different wigglers (2.5 wiggles each)

Longitudinal Damping Rate

Long. cooling decrement is proportional to the kick amplitude

 (ΔE_{max}) excited by a single particle

• Requirement to have the cooling range of σn_{σ} times yields

$$\lambda_2 = \frac{1}{2} f_0 \frac{\Delta E_{\text{max}}}{cp \sigma_p} \frac{\mu_0}{n_\sigma} F_{2G} \left(\frac{\mu_0}{n_\sigma}, \frac{\mu_0}{n_\sigma} \right)$$

• In optimum the long. damping rate does not depend on details of beam optics

For Gaussian dependence of laser gain on f the energy in a single particle pulse is related to the peak power and the FWHM bandwidth (power) as:

$$\int P(t)dt = \sqrt{\frac{\ln(2)}{\pi}} \frac{P_{peak}}{\Delta f_{FWHM}}$$

• RHIC proposal (2004), λ_{w} =12 µm, ($\Delta f/f$)_{FWHM}=6%

Longitudinal Damping Rate (2)

For beam with n_b bunches and N_p particles/bunch the average laser power is

$$P_{laser} = n_b N_p f_0 \sqrt{\frac{\ln(2)}{\pi}} \frac{P_{peak}}{\Delta f_{FWHM}} = \frac{n_b N_p f_0}{\Delta f_{FWHM}} \sqrt{\frac{\ln(2)}{\pi}} \left(\frac{\Delta E_{max}}{G_{kick}}\right)^2$$

where G_{kick} is the kicker efficiency determined by the equation for monochromatic wave $\Delta E_{max} = G_{kick} \sqrt{P}$

⇒ For helical dipole with large number of wiggles

$$P_{laser} = 1.26 \left(\frac{1}{n_{wgl} \left(\Delta f / f \right)_{FWHM}} \frac{1 + K_u^2}{K_u^2} \right) \frac{n_b N_p \lambda_2^2 \lambda_w}{cf_0} \frac{\left(cp\sigma_p / e \right)^2}{Z_0} \right)^2}{\frac{K_u >>1, n_{wgl} \left(\Delta f / f \right)_{FWHM} = 1}{cf_0} \approx \frac{n_b N_p \lambda_2^2 \lambda_w}{cf_0} \frac{\left(cp\sigma_p / e \right)^2}{Z_0}$$

- Number of wiggles is limited by bandwidth: $n_{wgl} \leq 1/(\Delta f/f)$
- For efficient kick the undulator parameter $K_u \ge 2$
 - For larger magnetic field the kicker is shorter for same $n_{wg/}$
- In optimal setup \perp cooling does not require additional power
 - but requires an optimized optics

Possible Choice of OSC Parameters

Damping time 4.5 hour, $N_p = 3 \cdot 10^{11}$, $n_b = 36$, $\sigma_p = 1.2 \cdot 10^{-4}$, $\lambda_2^{-1} = 4.5$ hour

 \Rightarrow Amplitude of single particle kick, $\Delta E_{max} = 0.66 \text{ eV}$

Wave length [µm]	Wiggler type/n _{wg/}	B [T]	Total length [m]	<i>G_{kicker}</i> [eV/√W]	∆fl f _{fwhm} %	P [W]
12	Tevatron dipole/(N/A)			26		125
6		4	N/A	18	6	133
2				14		71
12	Helical dipole/2.5	2	40	56	6	28
	Helical dipole/8	8	44	132	6	5
6	Helical dipole/7	6	38	110	6	3.5
2	Helical dipole/12	6	36	116	6	1.05

• Peak optical amplifier power is ~100 times larger than the average one

• Bandwidth is limited by optical amplifier

Discussion

- OSC would double the average Tevatron luminosity
- Cooling installation requires a modification of beam optics
 - CO straight is available
 - New optics implies
 - new quad circuits
 - may be new quads
 - shuffling existing and/or installation of new dipoles
 - Installation of wigglers?
 - Considerable work
 - Fractional tunes should stay the same
 - Helices should not be affected
 - Antiproton beam has less particles but requires faster cooling
 - That results in approximately the same power requirements for optics amplifier but its larger gain

$2 \mu m$ wavelength

- 2 μm parametric optical amplifier is feasible (MIT-Bates)
 - 20-100 W (pumped by Nd: YAG laser)
- Can be used with Tevatron dipoles being pickups and kickers (no wigglers), 70 W amplifier per beam
 - 2T helical wiggler (~20 m) requires ~12 W amplifier per beam
- Optics stability and path length control are questionable
 - We will continue to look into optics issues
- 12 μ m wavelength
 - Looks good for control of optics and the path length
 - Parametric optical amplifier pumped by 2-nd harmonic of CO_2 laser
 - Was not demonstrated yet
 - Attempt for RHIC was not quite successful
 - 5-10 W looks reasonable request
 - But R&D is required to prove feasibility
 - Requires ~6-8 T helical wiggler (≥4 years)
- There is no fast way (2-3 years) to introduce OSC in Tevatron
 - looks possible for 5-6 years

This Work Results and Plans for Further Studies

Done

- Better understanding of beam optics issues for OSC
 - Formulation of requirements for optimal beam optics
 - Understanding of cooling range
- Better understanding of kicker efficiency
 - Helical undulator allows to reduce its length and/or laser power
- Future work
 - Look into realistic Tevatron optics
 - Study its sensitivity
 - Is the 2 μm wavelength possible?
 - ⇒ If yes then the fast scenario can work with 60 W amplifier (No wigglers, pickup and kicker are in dipoles)

Making experiment in Bates would be extremely helpful but ?

Backup Viewgraphs

Damping Rates of Optical Stochastic Cooling

Transfer Matrix Parameterization

Vertical degree of freedom is uncoupled and we will omit it in further consideration

$$\mathbf{M} = \begin{bmatrix} M_{11} & M_{12} & 0 & M_{16} \\ M_{21} & M_{22} & 0 & M_{26} \\ M_{51} & M_{52} & 1 & M_{56} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} x \\ \theta_x \\ s \\ \Delta p / p \end{bmatrix}$$

M₁₆ & M₂₆ can be expressed through dispersion

$$\begin{bmatrix} M_{11} & M_{12} & M_{16} \\ M_{21} & M_{22} & M_{26} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} D_1 \\ D_1' \\ D_1' \\ 1 \end{bmatrix} = \begin{bmatrix} D_2 \\ D_2' \\ 1 \end{bmatrix}$$

That yields

$$M_{16} = D_2 - M_{11}D_1 - M_{12}D_1'$$
$$M_{26} = D_2' - M_{21}D_1 - M_{22}D_1'$$

$$M_{11} = \sqrt{\frac{\beta_2}{\beta_1}} (\cos \mu + \alpha_1 \sin \mu)$$
$$M_{22} = \sqrt{\frac{\beta_1}{\beta_2}} (\cos \mu - \alpha_2 \sin \mu)$$
$$M_{12} = \sqrt{\beta_1 \beta_2} \sin \mu$$
$$M_{21} = \frac{\alpha_1 - \alpha_2}{\sqrt{\beta_1 \beta_2}} \cos \mu - \frac{1 + \alpha_1 \alpha_2}{\sqrt{\beta_1 \beta_2}} \sin \mu$$

Transfer Matrix Parameterization (continue)

- Symplecticity ($\mathbf{M}^{\mathrm{T}}\mathbf{U}\mathbf{M} = \mathbf{U}$) binds up M_{51} , M_{52} and M_{16} , M_{26}
 - That yields $\mathbf{U} = \begin{vmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ -1 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & -1 & \mathbf{0} \end{vmatrix}$ $M_{51} = M_{21}M_{16} - M_{11}M_{26}$ $M_{52} = M_{22}M_{16} - M_{12}M_{26}$ Finally one can write $M_{16} = D_2 - D_1 \sqrt{\frac{\beta_2}{\beta}} (\cos \mu + \alpha_1 \sin \mu) - D_1' \sqrt{\beta_1 \beta_2} \sin \mu$ $M_{26} = D_1 \left(\frac{1 + \alpha_1 \alpha_2}{\sqrt{\beta_1 \beta_2}} \sin \mu + \frac{\alpha_2 - \alpha_1}{\sqrt{\beta_1 \beta_2}} \cos \mu \right) + D_1' - D_1' \sqrt{\frac{\beta_1}{\beta_2}} \left(\cos \mu - \alpha_2 \sin \mu \right)$ $M_{51} = -D_2 \left(\frac{1 + \alpha_1 \alpha_2}{\sqrt{\beta_1 \beta_2}} \sin \mu + \frac{\alpha_2 - \alpha_1}{\sqrt{\beta_1 \beta_2}} \cos \mu \right) + D_2' - D_2' \sqrt{\frac{\beta_2}{\beta_1}} \left(\cos \mu + \alpha_1 \sin \mu \right)$ $M_{52} = -D_1 + D_2 \sqrt{\frac{\beta_1}{\beta_1}} (\cos \mu - \alpha_2 \sin \mu) - D'_2 \sqrt{\beta_1 \beta_2} \sin \mu$

In the first order the orbit lengthening due to betatron motion is equal to zero if $D_1 = D_1 = D_2 = D_2 = 0$

Transfer Matrix Parameterization (continue)

Partial momentum compaction and slip factor (from point 1 to point 2) are related to M₅₆

$$\Delta s_{1\to 2} \equiv 2\pi R \eta_1 \frac{\Delta p}{p} = M_{51} D_1 \frac{\Delta p}{p} + M_{52} D_1' \frac{\Delta p}{p} + M_{56} \frac{\Delta p}{p} + \frac{1}{\gamma^2} \frac{\Delta p}{p}$$

• Further we assume that v = c, v=c, i.e. $1/\gamma^2 = 0$ and $\eta_1 = \alpha_{1 \rightarrow 2}$.

That results in
$$\eta_1 = \frac{M_{51}D_1 + M_{52}D_1' + M_{56}}{2\pi R}$$
 or

$$M_{56} = 2\pi R \eta_1 + D_1 D_2 \left(\frac{1 + \alpha_1 \alpha_2}{\sqrt{\beta_1 \beta_2}} \sin \mu + \frac{\alpha_2 - \alpha_1}{\sqrt{\beta_1 \beta_2}} \cos \mu \right) + D_1 D_2' \sqrt{\frac{\beta_2}{\beta_1}} (\cos \mu + \alpha_1 \sin \mu) - D_1' D_2 \sqrt{\frac{\beta_1}{\beta_2}} (\cos \mu - \alpha_2 \sin \mu) + D_1' D_2' \sqrt{\beta_1 \beta_2} \sin \mu$$

Thus, the entire transfer matrix from a point 1 to a point 2 can be expressed through the β -functions, dispersions and their derivatives at these points and the partial slip factor

Parameterization of the Entire Ring Transfer Matrix

Formulas for the entire ring look more compact

$$M_{11} = \cos \mu + \alpha \sin \mu$$

$$M_{12} = \beta \sin \mu$$

$$M_{21} = -\frac{1 + \alpha^2}{\beta} \sin \mu$$

$$M_{22} = \cos \mu - \alpha \sin \mu$$

$$M_{16} = D(1 - \cos \mu - \alpha \sin \mu) - D'\beta \sin \mu$$

$$M_{26} = D\frac{1 + \alpha^2}{\beta} \sin \mu + D'(1 - \cos \mu + \alpha \sin \mu)$$

$$M_{51} = -D\frac{1 + \alpha^2}{\beta} \sin \mu + D'(1 - \cos \mu - \alpha \sin \mu)$$

$$M_{52} = -D(1 - \cos \mu + \alpha \sin \mu) - D'\beta \sin \mu$$

$$M_{56} = 2\pi R \alpha_{1 \rightarrow 2} + D^2 \frac{1 + \alpha^2}{\beta} \sin \mu + 2DD'\alpha \sin \mu + D'^2\beta \sin \mu$$

$$\mathbf{M} = \begin{bmatrix} M_{11} & M_{12} & 0 & M_{16} \\ M_{21} & M_{22} & 0 & M_{26} \\ M_{51} & M_{52} & 1 & M_{56} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} x \\ \theta_x \\ s \\ \Delta p / p \end{bmatrix}$$

Damping Rates of Optical Stochastic Cooling

Longitudinal kick

$$\frac{\delta p}{p} = \kappa \,\Delta L = \kappa \left(M_{151} x_1 + M_{152} \theta_{x_1} + M_{156} \frac{\Delta p}{p} \right)$$

Or in the matrix form: $\delta \mathbf{X} = \mathbf{M}_c \mathbf{X}_1$

Total ring matrix related to kicker (Ring&RF&damper)

 $\mathbf{M}_{tot}\mathbf{X}_{2} = \mathbf{M}_{1}\mathbf{M}_{2}\mathbf{X}_{2} + \mathbf{\delta}\mathbf{X}_{2} = \mathbf{M}_{1}\mathbf{M}_{2}\mathbf{X}_{2} + \mathbf{M}_{c}\mathbf{X}_{1} = (\mathbf{M}_{1}\mathbf{M}_{2} + \mathbf{M}_{c}\mathbf{M}_{2})\mathbf{X}_{2}$ $\Rightarrow \qquad \mathbf{M}_{tot} = \mathbf{M} + \mathbf{\Delta}\mathbf{M}_{c} \qquad \text{where} \qquad \mathbf{M} = \mathbf{M}_{1}\mathbf{M}_{2}, \quad \mathbf{\Delta}\mathbf{M} = \mathbf{M}_{c}\mathbf{M}_{2}$ **Damping Rates of Optical Stochastic Cooling (continue)** Perturbation theory yields that the eigen-value correction is [HB2008]: $\delta\lambda_{k} = \frac{i}{2} \mathbf{v}_{k}^{+} \mathbf{U} \Delta \mathbf{M} \mathbf{v}_{k} = \frac{i}{2} \mathbf{v}_{k}^{+} \mathbf{U} \mathbf{M}_{c} \mathbf{M}_{1}^{-1} (\mathbf{M}_{1} \mathbf{M}_{2}) \mathbf{v}_{k} = \frac{i}{2} \lambda_{k} \mathbf{v}_{k}^{+} \mathbf{U} \mathbf{M}_{c} \mathbf{M}_{1}^{-1} \mathbf{v}_{k}$ Corresponding tune shift is: $\delta Q_{k} = \frac{i}{2\pi} \frac{\delta\lambda_{k}}{\lambda_{k}} = -\frac{1}{4\pi} \mathbf{v}_{k}^{+} \mathbf{U} \mathbf{M}_{c} \mathbf{M}_{1}^{-1} \mathbf{v}_{k}$

Symplecticity relates the transfer matrix and its inverse:

 $\mathbf{M}_{1}^{-1} = -\mathbf{U} \mathbf{M}_{1}^{T} \mathbf{U}$

$$\Rightarrow \qquad \delta Q_k = \frac{1}{4\pi} \mathbf{v}_k^{\dagger} \mathbf{U} \mathbf{M}_c \mathbf{U} \mathbf{M}_1^{T} \mathbf{U} \mathbf{v}_k$$

Performing matrix multiplication and taking into account that symplecticity binds up M_{51} , M_{52} and M_{16} , M_{26} one finally obtains:

$$\delta Q_{k} = \frac{\kappa}{4\pi} \mathbf{v}_{k}^{+} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ M_{1_{26}} & -M_{1_{16}} & 0 & M_{1_{56}} \\ 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{v}_{k}$$

Eigen-vectors and Damping Decrements (Mode 1)

- There are two eigen-vectors
 - One related to the betatron motion \mathbf{v}_1
 - And one related to the synchrotron motion \mathbf{v}_2
- They are normalized as: $\mathbf{v}_k^+ \mathbf{U} \mathbf{v}_k = -2i$
- If the synchrotron tune and dispersion in RF cavities are small the effect of RF can be neglected in the computation of v_1

• In this case
$$\lambda_1 = e^{-i\mu}$$
 and
the eigen-vector related to the kicker position is

$$\mathbf{v}_{1} = \begin{bmatrix} \sqrt{\beta_{2}} \\ -(i+\alpha_{2})/\sqrt{\beta_{2}} \\ \mathbf{v}_{1_{3}} \\ 0 \end{bmatrix}, \quad \mathbf{M}\mathbf{v}_{k} = \lambda_{k}\mathbf{v}_{k}, \quad \mathbf{M} = \begin{bmatrix} M_{11} & M_{12} & 0 & M_{16} \\ M_{21} & M_{22} & 0 & M_{26} \\ M_{51} & M_{52} & 1 & M_{56} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The first 2 components are the same as for uncoupled case. The third component has to be found from the third equation $v_{1_3} = -\frac{iD_2(1-i\alpha_2) + D'_2\beta_2}{\sqrt{\beta_2}}$ • Corresponding damping rate is $\lambda_1 = -2\pi \operatorname{Im} \delta Q_1$

$$= -\frac{\kappa}{2} \operatorname{Im} \left[\begin{bmatrix} \sqrt{\beta_2} \\ -(i+\alpha_2)/\sqrt{\beta_2} \\ v_{1_3} \\ 0 \end{bmatrix}^+ \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ M_{1_{26}} & -M_{1_{16}} & 0 & M_{1_{56}} \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{\beta_2} \\ -(i+\alpha_2)/\sqrt{\beta_2} \\ v_{1_3} \\ 0 \end{bmatrix} \right]$$
$$= -\frac{\kappa}{2} \left(D_2 M_{1_{2,6}} - D'_2 M_{1_{1,6}} \right)$$

That yields

$$\lambda_{1} = -\frac{\kappa}{2} \left[D_{1}D_{2} \frac{(1+\alpha_{1}\alpha_{2})\sin\mu_{1} + (\alpha_{2}-\alpha_{1})\cos\mu_{1}}{\sqrt{\beta_{1}\beta_{2}}} - D_{1}'D_{2}\sqrt{\frac{\beta_{1}}{\beta_{2}}}(\cos\mu_{1}-\alpha_{2}\cos\mu_{1}) + D_{1}D_{2}'\sqrt{\frac{\beta_{2}}{\beta_{1}}}(\cos\mu_{1}+\alpha_{1}\sin\mu_{1}) + D_{1}'D_{2}'\sqrt{\beta_{1}\beta_{2}}\sin\mu_{1} \right]$$

Expressing it through the partial slip factor one gets

$$\lambda_1 = -\frac{\kappa}{2} \left(M_{56} - 2\pi R \eta_1 \right)$$

Eigen-vectors and Damping Decrements (Mode 2)

- To find the second eigen-vector we will ignore the second order effects of betatron motion on the longitudinal dynamics
 - The linerazed RF kick is

$$\frac{\delta p}{p} = -\Phi_s s$$

- Simple calculations yield for the eigen value $\lambda_1 = e^{-i\mu_s}$ where the synchrotron tune $\mu_s = \sqrt{2\pi R \eta \Phi_s}$
- Corresponding eigen-vector related to the kicker position is

$$\mathbf{v}_{1} = \begin{bmatrix} -iD_{2} / \sqrt{\beta_{s}} \\ -iD_{2}' / \sqrt{\beta_{s}} \\ \sqrt{\beta_{s}} \\ -i / \sqrt{\beta_{s}} \end{bmatrix}$$

where the longitudinal beta-function $\beta_s = 2\pi R \eta / \mu_s$

Corresponding damping rate is

$$\begin{split} \lambda_2 &= -2\pi \operatorname{Im} \delta Q_2 \\ &= -\frac{\kappa}{2} \operatorname{Im} \left(\begin{bmatrix} -iD_2 / \sqrt{\beta_s} \\ -iD_2' / \sqrt{\beta_s} \\ \sqrt{\beta_s} \\ -i/\sqrt{\beta_s} \end{bmatrix}^+ \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ M_{126} & -M_{16} & 0 & M_{156} \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -iD_2 / \sqrt{\beta_s} \\ -iD_2' / \sqrt{\beta_s} \\ \sqrt{\beta_s} \\ -i/\sqrt{\beta_s} \end{bmatrix} \right) \\ &= -\frac{\kappa}{2} \Big(M_{156} - D_2 M_{126} + D_2' M_{116} \Big) \end{split}$$

Expressing the matrix elements through Twiss parameters one obtains

$$\lambda_2 = -\frac{\kappa}{2} M_{1_{56}} - \lambda_1 = -\pi \kappa R \eta_1$$

The last expression can be directly obtained from the definition of the partial slip factor

The above equation yields the sum of the decrements is

$$\lambda_1 + \lambda_2 = -\frac{\kappa}{2} M_{1_{56}}$$

Damping Rates for Smooth Lattice Approximation

For zero derivatives of beta-function and dispersion at pickup and kicker one obtains

$$\lambda_1 = -\frac{\kappa}{2} \frac{D_1 D_2}{\sqrt{\beta_1 \beta_2}} \sin \mu_1$$
$$\lambda_2 = -\frac{\kappa}{2} \left[M_{1_{56}} - \frac{D_1 D_2}{\sqrt{\beta_1 \beta_2}} \sin \mu_1 \right]$$

Smooth lattice approximation additionally yields

$$\beta = \frac{R}{\nu}, \quad D = \frac{R}{\nu^2}, \quad \mu_1 = \nu \frac{L_{pk}}{R} \quad \eta_1 = -\frac{L_{pk}}{2\pi \nu^2 R}, \quad M_{1_{56}} = -\frac{L_{pk}}{\nu^2} + \frac{R}{\nu^3} \sin\left(\nu \frac{L_{pk}}{R}\right),$$

where L_{pk} is the pickup-to-kicker path length, and v is the betatron tune

$$\lambda_{1} = -\frac{\kappa}{2} \frac{R}{\nu^{3}} \sin\left(\nu \frac{L_{pk}}{R}\right)$$
$$\lambda_{2} = \frac{\kappa}{2} \frac{L_{pk}}{\nu^{2}}$$

<u>Comparison to Zholents-Zolotorev result</u>

PRST-AB, v.7, p.12801 (2004)

Eqs. (A9) and (A11) in the paper Appendix can be rewritten in the following simplified form

$$\lambda_{1} = \frac{\kappa}{2} \left(D_{2} M_{1_{51}}^{-1} + D_{2}' M_{1_{52}}^{-1} \right)$$
$$\lambda_{2} = -\frac{\kappa}{2} \left(D_{2} M_{1_{51}}^{-1} + D_{2}' M_{1_{52}}^{-1} + M_{1_{56}}^{-1} \right)$$

The inverse of the matrix is

$$\mathbf{M}_{1}^{-1} = -\mathbf{U} \mathbf{M}_{1}^{T} \mathbf{U} = \begin{bmatrix} M_{122} & -M_{112} & 0 & M_{152} \\ -M_{121} & M_{111} & 0 & M_{151} \\ M_{126} & M_{116} & 1 & -M_{156} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Substituting expressions for matrix elements into above Eqs. for decrements one arrives to the same results

Sample Lengthening on Pickup-to-Kicker Travel

Zero length sample lengthens on its way from pickup-to-kicker

$$\sigma_{\Delta L}^{2} = \int \left(M_{1_{51}} x + M_{1_{52}} \theta_{x} + M_{1_{56}} \widetilde{p} \right)^{2} f\left(x, \theta_{x}, \widetilde{p}\right) dx d\theta_{x} d\widetilde{p} , \quad \widetilde{p} = \frac{\Delta \mu}{p}$$

where for Gaussian distribution

$$f(x,\theta_{x},\tilde{p}) = \frac{\exp\left(-\frac{\gamma_{p}\left(x-D_{p}\tilde{p}\right)^{2}+2\alpha_{p}\left(\theta_{x}-D_{p}\tilde{p}\right)\left(x-D_{p}\tilde{p}\right)+\beta_{p}\left(x-D_{p}\tilde{p}\right)-\frac{\tilde{p}^{2}}{2\sigma_{p}^{2}}\right)}{\sqrt{2\pi}2\pi\sigma_{p}\varepsilon}, \quad \gamma_{p} = \frac{1+\alpha_{p}^{2}}{\beta_{p}}$$

Performing integration one obtains

$$\sigma_{\Delta L}^{2} = \varepsilon \left(\beta_{p} M_{1_{51}}^{2} - 2\alpha_{p} M_{1_{51}} M_{1_{52}} + \gamma_{p} M_{1_{52}}^{2}\right) + \sigma_{p}^{2} \left(M_{1_{51}} D_{p} + M_{1_{52}} D'_{p} + M_{1_{56}}\right)^{2}$$

Expressing matrix elements through Twiss parameters yields $\sigma_{\Delta L}^{2} = \varepsilon F_{\varepsilon} + \sigma_{p}^{2} (2\pi R \alpha_{1\rightarrow 2})^{2}$ $F_{\varepsilon} = D_{p}^{2} \gamma_{p} + D_{k}^{2} \gamma_{k} - \frac{2D_{p}D_{k}}{\sqrt{\beta_{p}\beta_{k}}} ((1 + \alpha_{p}\alpha_{k})\cos\mu_{1} + (\alpha_{p} - \alpha_{k})\sin\mu_{1}) + D_{p}^{\prime 2}\beta_{p} + D_{k}^{\prime 2}\beta_{k} + 2D_{p}D_{p}^{\prime}\alpha_{p} + 2D_{p}D_{p}^{\prime}\alpha_{p} + 2D_{p}D_{k}^{\prime}\sqrt{\frac{\beta_{k}}{\beta_{p}}}(\sin\mu_{1} - \alpha_{p}\cos\mu_{1}) - 2D_{k}D_{p}^{\prime}\sqrt{\frac{\beta_{p}}{\beta_{k}}}(\sin\mu_{1} + \alpha_{k}\cos\mu_{1}) - 2D_{k}D_{p}^{\prime}\sqrt{\frac{\beta_{p}}{\beta_{k}}}\cos\mu_{1}$

For zero derivatives it yields

$$\sigma_{\Delta L}^{2} = \varepsilon \left(\frac{D_{k}^{2}}{\beta_{k}} + \frac{D_{p}^{2}}{\beta_{p}} - \frac{2D_{k}D_{p}}{\sqrt{\beta_{k}\beta_{p}}} \cos \mu_{1} \right) + \sigma_{p}^{2} \left(M_{1_{56}} - \frac{D_{k}D_{p}}{\sqrt{\beta_{k}\beta_{p}}} \sin \mu_{1} \right)$$

References

HB2008 - V. Lebedev, A. Burov, "Coupling and its Effects on Beam Dynamics", HB-2008