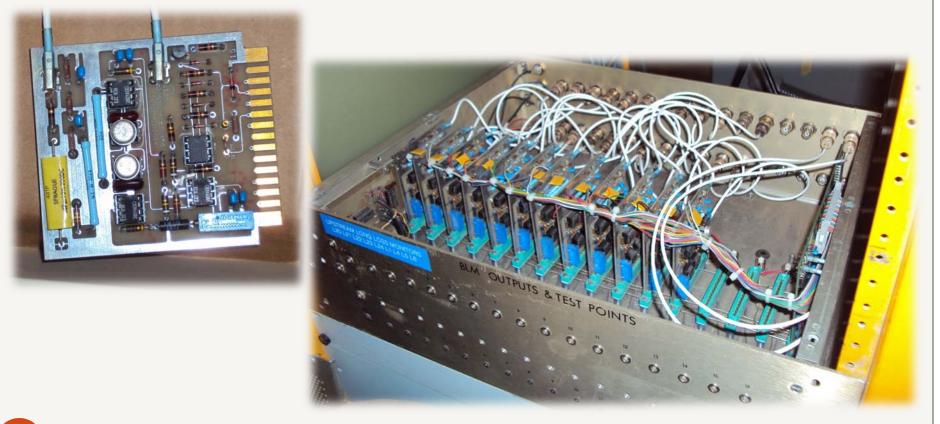
Booster BLM Upgrade

Preparation for BLM Commissioning April 10, 2013 C. Drennan



What is Not Changing

- The loss monitor devices and cabling in the tunnel.
- The high voltage distribution for the loss monitors
- The cabling from the tunnel to the gallery
- The way that BLM readings are displayed in ACNET and the Control Room.
- The ACNET names for the BLM's.
 - However, some IRM names will go away.
- Support for existing applications that use Booster BLM data.

What is Changing

• The 30 year old Log Integrator chassis and daughter boards are going away.

3

What is Changing (cont.)

- The BLM data will no longer be digitized by MADC's or IRM's.
- Only 60 of the Booster BLM's will be changed initially.

What is Changing (cont.)

- These integrators are being replace with the new VME Integrator Digitizers.
- A new VME front-end processor will collect the data from the Digitizers, process the data into the different forms, and serve the data to ACNET applications

Changes to Racks in the Gallery

• New VME chassis with the new modules have been (or will be) installed at periods 1, 11, 17 and 20.

Location: G02-RR1

Booster BLM Upgrade

7

Location: G01-RR6

Location: G01-RR6 New VME Chassis

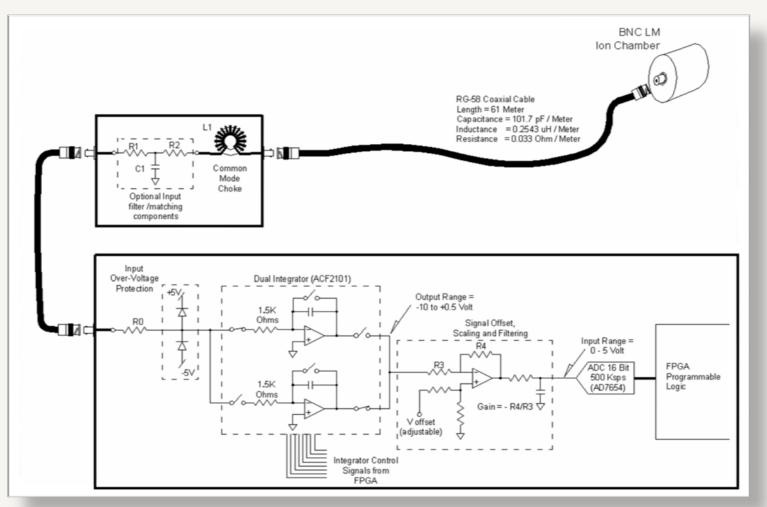
Location: G11-RR6

Location: G11-RR6

Booster BLM Upgrade

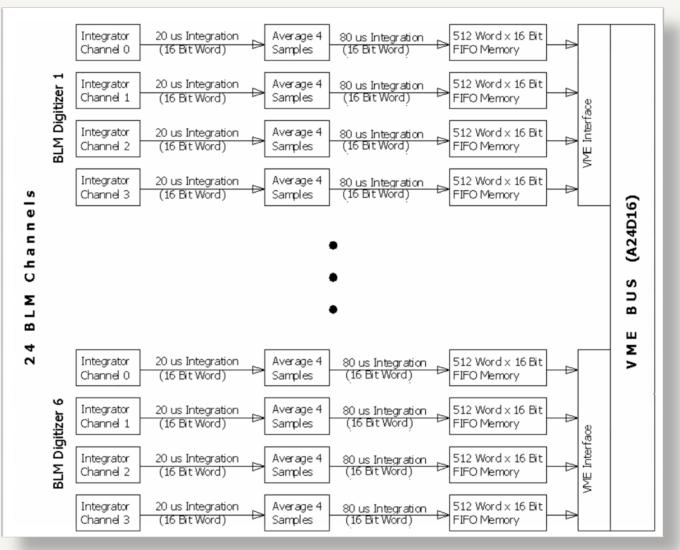
4/11/2013

Location: G17-RR2


Location: G20-RR1

13

How does it work?


4/11/2013

4 Channel Integrator Digitizer

15

On Board Processing

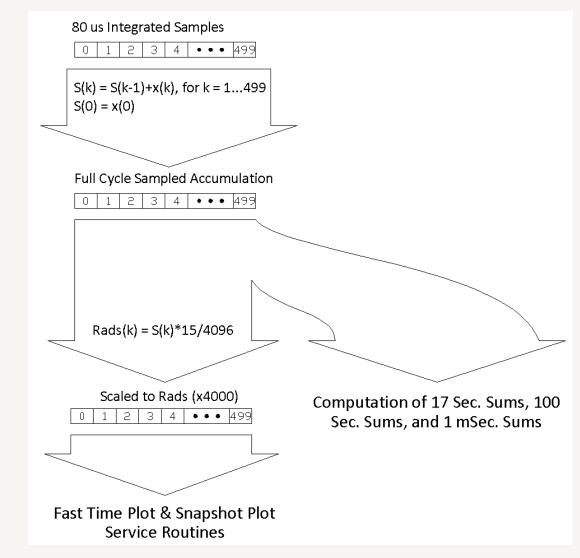
Front-End Processing

- BLM Data Formats
 - The base 80 us integration samples.
 - Base data for computing the other sums.
 - The full cycle sampled accumulation
 - Data for Snap Shot plots. Used when tuning the Booster.
 - ACNET Devices B:BLMxxx

After the 80 μ s samples have been read from the Digitizer cards, the data is summed into 500 Long Integer values of a continuously integrating signal. That is,

$$S(k) = S(k - 1) + A(k) - pedestal,$$
 for $k = 1 ... 499$
 $S(0) = A(0)$

where S(k) are samples of the continuously integrating signal and A(k) are the 80 µs integration samples. There is a 500 point buffer of this kind for as many as 24 BLM channels.


Front-End Processing

The Full Cycle Sampled Accumulation values are converted into units of Rads (x4000). This conversion will make the numbers smaller, small enough to reduce the digital values to 16 bits. The range and resolution are still acceptable. The maximum value in Rads can be 16.384 with an ideal resolution of 0.00025 Rads per bit. The charge in Coulombs from the BLM that results in this maximum in Rads was previously 58 Rads/Sec in the old system. Details on the scaling are given in a later section.

The conversion to Rads (x4000) is

 $Rads(k) = S(k) * 15/2^{12}$

Front-End Processing

- The 1 ms integration samples
 - Data delivered to the BLM data logging application BLMLOG.
 - ACNET Devices B:BLxxx4 and B:BLxxxD
 - Ref "Booster Loss Monitor Data Logging", K. Cahill March 11, 2002.

IV.3 The 1 ms Integration Samples Each cycle, the data is summed into 40 each 1 ms sums. That is, w(0) = S(11) - S(0)w(1) = S(23) - S(12)w(2) = S(35) - S(24)

w(39) = S(499) - S(488)

where S(k) are the Full Cycle Sampled Accumulation points and w(k) are the 1 ms sums. These sums are double precision floating point values. There is a 40 point buffer of this kind for each of the 12 Booster cycle types, for each of as many as 24 BLM channels in a crate. That is 288 (=12 x 24) of this kind of buffer possible per crate.

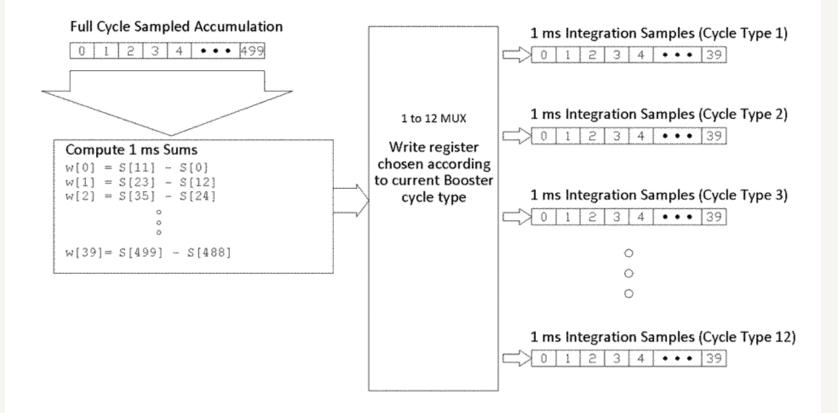
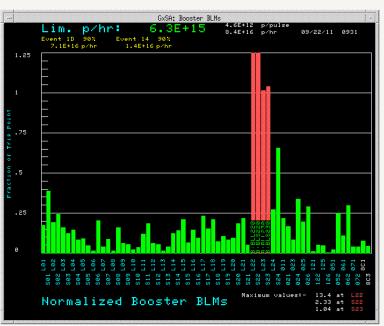
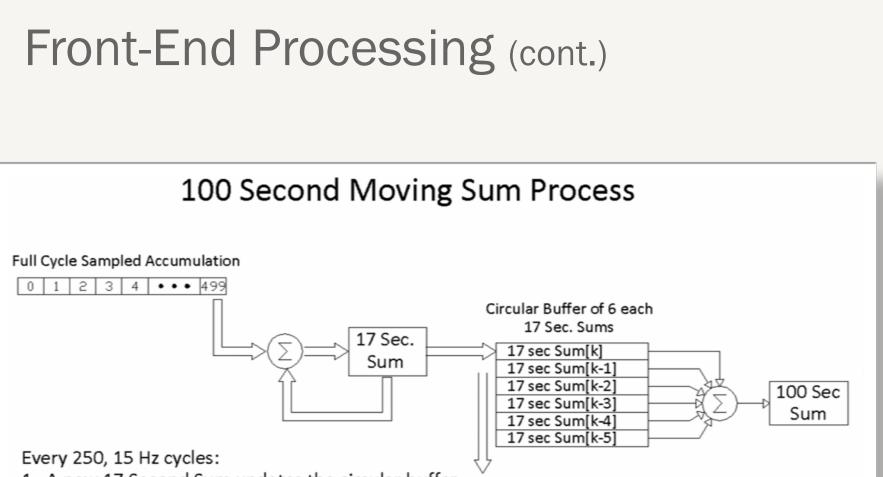




Figure IV.2.1 Illustration of the 1 milli-second sums signal processing for each BLM

- The 100 second moving sums
 - Used in Booster performance and BLM Alarms, App. B88.
 - ACNET Devices B:BLxxx0
 - Ref. <u>http://www-ad.fnal.gov/proton/booster/blms</u>

22

- 1. A new 17 Second Sum updates the circular buffer .
- 2. The 100 Second Sum is updated.
- 3. The 17 Second Sum register is cleared.

- The 7.5 Hz Waveform Buffers (RETDAT)
 - IRM process for delivering time stamped data, synchronized across front-ends. Used by App. B136 and other JAVA based programs.
 - Ref. R. Goodwin, "BLM Correlated Data", Nov. 1, 2002

Given that we know that the Voltage output range of the Log Integrators has a range of 0.0002 Volts to 10.0 Volts we can use the calibration coefficients we have measured to determine the corresponding amount of charge from the detector that produces the Voltage output.

Applying the scaling of the MADC digitizers and the scaling performed by the ACNET database, we can compute the range of Rad/Sec values that can result.

	Log Integ. Calibration Coeff	ficients	ACNET Log to Linear conv. coefficients d1 = 0.00721196 d2 = 1.057772					
	c1 =	1.079						
	c2 =	23.344						
	Log Integrator Conversions							
	Q=EXP((V/c1)-(c2/c1))	V=c1*LN(Q)+c2	Bits=V*3276.8	RS=d1*EXP(d2*V)				
given	compute	compute	compute	compute				
	_							
Volts	Qsum	Volts	Bits	Rad/Sec				
0.00015	4.01944E-10	0.00015	0	0.00721310				
0.1	4.40915E-10	0.1	328	0.0080				
0.2	4.83732E-10	0.2	655	0.0089				
0.3	5.30707E-10	0.3	983	0.0099				
0.4	5.82243E-10	0.4	1311	0.0110				
0.5	6.38784E-10	0.5	1638	0.0122				
0.6	7.00815E-10	0.6	1966	0.0136				
0.7	7.68871E-10	0.7	2294	0.0151				
0.8	8.43535E-10	0.8	2621	0.0168				
0.9	9.2545E-10	0.9	2949	0.0187				
1	1.01532E-09	1	3277	0.0208				
1.1	1.11392E-09	1.1	3604	0.0231				
1.2	1.22209E-09	1.2	3932	0.0257				
1.3	1.34076E-09	1.3	4260	0.0285				
1.4	1.47096E-09	1.4	4588	0.0317				
1.5	1.61381E-09	1.5	4915	0.0352				
1.6	1.77052E-09	1.6	5243	0.0392				
1.7	1.94245E-09	1.7	5571	0.0436				
1.8	2.13108E-09	1.8	5898	0.0484				
1.9	2.33803E-09	1.9	6226	0.0538				
2	2.56507E-09	2	6554	0.0598				
2.1	2.81416E-09	2.1	6881	0.0665				
2.2	3.08744E-09	2.2	7209	0.0739				

Using the range of charge determined for the Log Integrators, we can compute the range of Rad/Sec values that could be managed using the new Integrator digitizers. This is done here when using the new readouts with an equivalent Log conversion of the data being delivered to ACNET.

The draw back here is the complex math needed to be done quickly in the front-ends.

		Coefficients for Equivalent Match				
G1 =	1.581710E+13	m =	3535.6672			
		b =	-30962.73191			
New Integrator Conversions (Equivalent)						
Copied	S(k) = (1/G1)*Qsum	Y=m*LN(S)+b	RS=d1*EXP(d2*Y/3276.8)			
from column 'C'	compute	compute	compute			
Qsum	S(k), Bits	equivalent Log	Rad/Sec			
4.01944E-10	6357	0	0.0072			
4.40915E-10	6973	327	0.0080			
4.83732E-10	7651	655	0.0089			
5.30707E-10	8394	982	0.0099			
5.82243E-10	9209	1310	0.0110			
6.38784E-10	10103	1638	0.0122			
7.00815E-10	11084	1965	0.0136			
7.68871E-10	12161	2293	0.0151			
8.43535E-10	13342	2621	0.0168			
9.2545E-10	14637	2948	0.0187			
1.01532E-09	16059	3276	0.0208			
1.11392E-09	17618	3604	0.0231			
1.22209E-09	19329	3932	0.0257			
1.34076E-09	21206	4259	0.0285			
1.47096E-09	23266	4587	0.0317			
1.61381E-09	25525	4915	0.0352			
1.77052E-09	28004	5242	0.0392			
1.94245E-09	30723	5570	0.0435			
2.13108E-09	33707	5898	0.0484			
2.33803E-09	36980	6225	0.0538			
2.56507E-09	40572	6553	0.0598			

4/11/2013

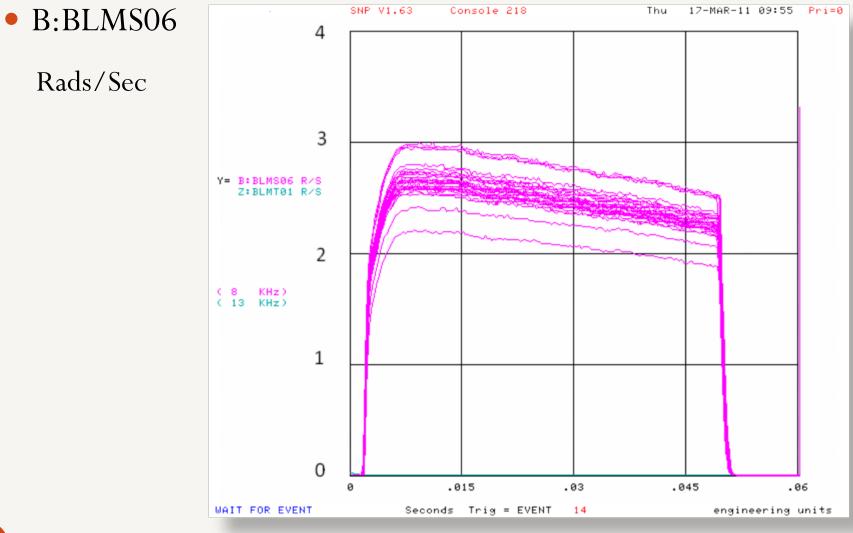
Using the new readout system we can convert the linear data directly to a 16 bit representation of the number of Rads. For our established range of charge in for the BLM detector, this results in a range in Rads from 0.0057 to 60.8 Rads. We have determined that by multiplying these values up by 4000 we can deliver to ACNET a 16 bit value with a bit more resolution and a range of 15.1438 Rads (57.9042 equivalent Rads/Sec). This top end is higher than we would ever allow a Booster BLM to experience, and is sufficiently high.

New Integrator Gain T	erm	Conversion to Rads (70nC/Rad)					
G1 =	1.581710E+13	H1 = 1/(G1_*70e-9) =	9.03182E-07				
New Integrator Conversions (To Rads)							
Copied	S(k) = (G1)*Qsum	Rads=S*H1	RS=d1_*EXP(d2_*Y/3276.8)				
from column 'C'	compute	compute	compute				
Qsum	S(k), Bits	Rads	Rad/Sec				
4.01944E-10	6357	0.00574153	0.00721196				
4.40915E-10	6973	0.0063	0.0080				
4.83732E-10	7651	0.0069	0.0089				
5.30707E-10	8394	0.0076	0.0099				
5.82243E-10	9209	0.0083	0.0110				
6.38784E-10	10103	0.0091	0.0122				
7.00815E-10	11084	0.0100	0.0136				
7.68871E-10	12161	0.0110	0.0151				
8.43535E-10	13342	0.0121	0.0168				
9.2545E-10	14637	0.0132	0.0187				
1.01532E-09	16059	0.0145	0.0208				
1.11392E-09	17618	0.0159	0.0231				
1.22209E-09	19329	0.0175	0.0257				
1.34076E-09	21206	0.0192	0.0285				
1.47096E-09	23266	0.0210	0.0317				
1.61381E-09 1.77052E-09	25525 28004	0.0231	0.0352				
1.77052E-09 1.94245E-09	28004 30723	0.0253	0.0392				
2.13108E-09	30723	0.0277	0.0435				
2.13108E-09 2.33803E-09	35707	0.0304	0.0484				
2.56507E-09	40572	0.0354					
2.303072-03	40372	0.0300	0.0558				

The determination of the scale factor between charge Qsum and Rads (x4000) is detailed in the specification document "Booster Beam Loss Monitor Data Acquisition and Presentation Specification". Besides converting Rads to a 16 bit integer for passing to ACNET, an approximation of the final scale factor is made to simplify the math needed in the frontend. The final columns below evaluate the error due to this approximation.

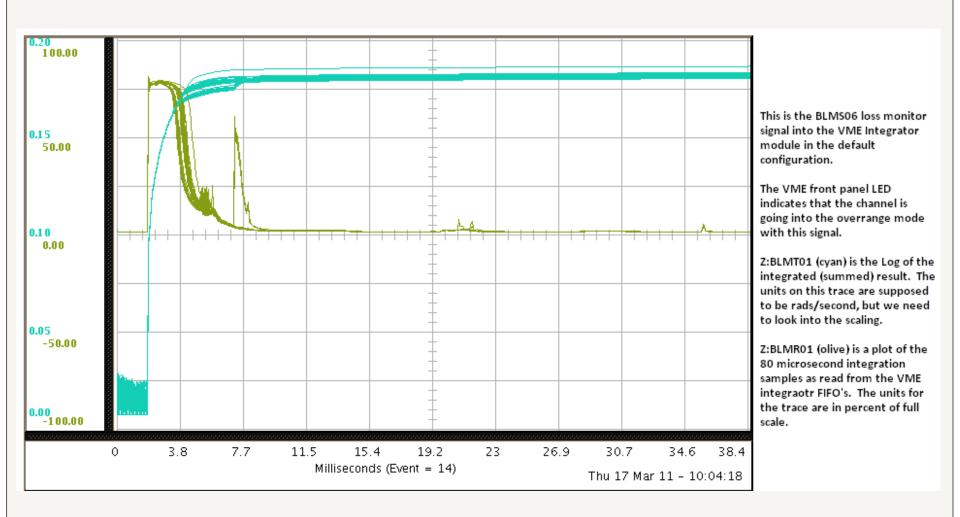
Numerator/Denominator for Integer Math

NI - 1E

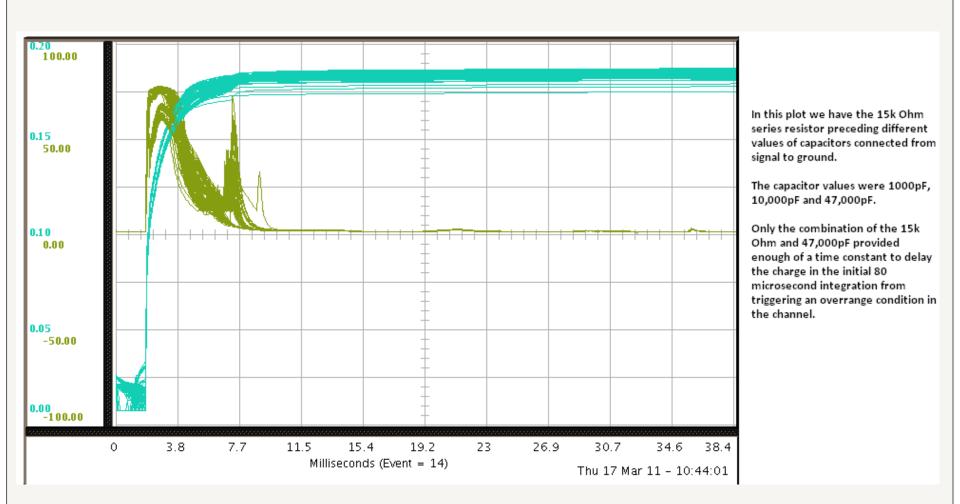

N = 15								
D = 4096								
=S(k)*N	=S(k)*N/D	=S(k)*N/D	Rads =					
(Hex)	(Hex)	(Dec.)	S*N/D/4000	%error				
0001747в	00000017	23	0.0058	-0.1475				
00019893	00000019	25	0.0063	0.7632				
0001C04D	0000001c	28	0.0070	-1.2905				
0001EBD6	0000001E	30	0.0075	1.0782				
00021B97	00000021	33	0.0083	0.8136				
00024FF9	00000024	36	0.0090	1.3776				
00028974	00000028	40	0.0100	0.1086				
0002C88F	0000002C	44	0.0110	-0.1493				
00030DC2	00000030	48	0.0120	0.4179				
000359A3	00000035	53	0.0133	-0.2277				
0003ACF5	0000003A	58	0.0145	0.0289				
0004084E	00000040	64	0.0160	-0.5499				
00046C8F	00000046	70	0.0175	-0.2426				
0004DA8A	0000004D	77	0.0193	-0.5058				
0005533E	00000055	85	0.0213	-1.1195				
0005D79B	0000005D	93	0.0233	-0.8478				
000668DC	00000066	102	0.0255	-0.8163				
0007082D	00000070	112	0.0280	-0.9024				
0007B705	0000007B	123	0.0308	-1.0016				
00087600	00000087	135	0.0338	-1.0435				
00094944	00000094	148	0.0370	-0.9671				

Using the new readout system we can convert the linear data directly to a 16 bit representation of the number of Rads. For our established range of charge in for the BLM detector, this results in a range in Rads from 0.0057 to 60.8 Rads. We have determined that by multiplying these values up by 4000 we can deliver to ACNET a 16 bit value with a bit more resolution and a range of 15.1438 Rads (57.9042 equivalent Rads/Sec). This top end is higher than we would ever allow a Booster BLM to experience, and is sufficiently high.					The determination of the scale factor between charge Qsum and Rads (x4000) is detailed in the specification document "Booster Beam Loss Monitor Data Acquisition and Presentation Specification". Besides converting Rads to a 16 bit integer for passing to ACNET, an approximation of the final scale factor is made to simplify the math needed in the front- end. The final columns below evaluate the error due to this approximation.				ation nt-	
Now Integrator Cain T		Conversion to Pade (7	OpC/Pad)		Numerator/Denom	inator for Intogo	r Math			
New Integrator Gain Term		Conversion to Rads (70nC/Rad) H1 = 1/(G1 *70e-9) = 9.03182E-07			Numerator/Denominator for Integer Math					
G1 = 1.581710E+13		HI - 1/(GI_ 70e-3) -	5.051622-07	D = 4096						
Newle	to anoton Comunicana /I					4050				
	tegrator Conversions (1									
Copied	S(k) = (G1)*Qsum	Rads=S*H1	RS=d1_*EXP(d2_*Y/3276.8)							
from column 'C'	compute	compute	compute		a (1) tra	~ (1) to b	a (1) trade	D. J.		
Qsum	S(k), Bits	Rads	Rad/Sec		=S(k)*N (Hex)	=S(k)*N/D (Hex)	=S(k)*N/D (Dec.)	Rads = S*N/D/4000	%error	
•			-							
3.82459E-07			18.0906		05689854	00005689	22153	5.5383	-1.355	
4.19599E-07			20.1112		05EF0D2B	00005EF0	24304	6.0760	-1.354	
4.60346E-07					0682909B	00006829	26665	6.6663	-1.357	
5.05049E-07					07246731	00007246	29254	7.3135	-1.356	
5.54094E-07					07D5F500	00007D5F	32095	8.0238	-1.356	
6.07901E-07			30.6966		0898C0DA	0000898C	35212	8.8030	-1.357	
6.66934E-07					096E774D	000096E7	38631	9.6578	-1.356	
7.31699E-07					0A58EE90	0000A58E	42382	10.5955	-1.355	
8.02754E-07					0B5A2AAC	0000B5A2	46498	11.6245	-1.356	
8.80708E-07					00746196	0000C746	51014	12.7535	-1.357	
9.66233E-07					0DAA0057	0000DAA0	55968	13.9920	-1.357	
1.06006E-06	16767116	15.1438	57.9042		0EFDB034	0000EFDB	61403	15.3508	-1.357	
					The 16 bit	range lim	it			
1.163E-06	18395351	16.6143	64.3714		10725099	00010725	67365	16.8413	-1.356	
1.27594E-06	20181703	18.2277	71.5610		120B39A9	000120B3	73907	18.4768	-1.350	
1.39985E-06	22141525	19.9978	79.5279		13CBCAFB	00013CBC	81084	20.2710	-1.35	
1.53578E-06	24291663	21.9398	88.4103		15b7eba1	00015B7E	88958	22.2395	-1.35	
1.68492E-06	26650599	24.0703	98.2848		17D3D689	00017D3D	97597	24.3993	-1.35	
1.84854E-06	29238608	26.4078	109.2268		1A242FB0	0001A242	107074	26.7685	-1.35	
2.02805E-06	32077936	28.9722	121.4263		1CAE0E90	0001CAE0	117472	29.3680	-1.356	
2.225E-06	35192988	31.7857	134.9882		1F770924	0001F770	128880	32,2200	-1.35	

THE END


30

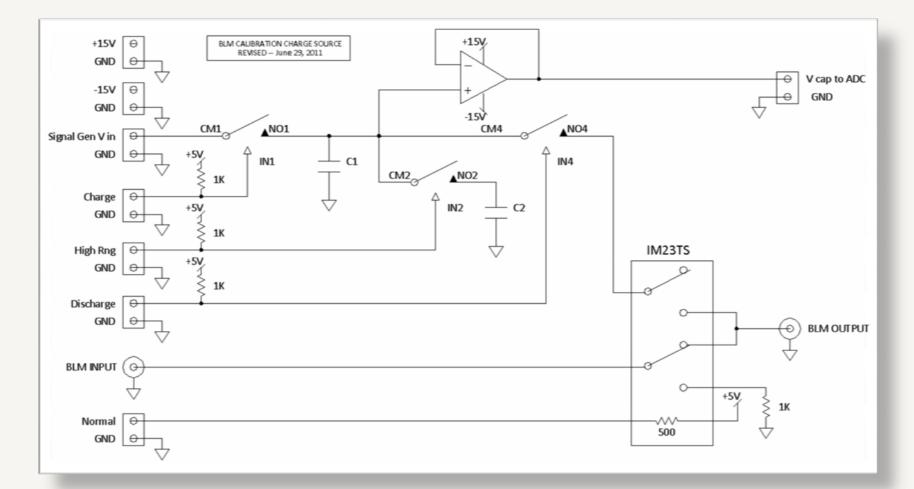
Testing with Booster BLM's



Booster BLM Upgrade

B:BLMS06

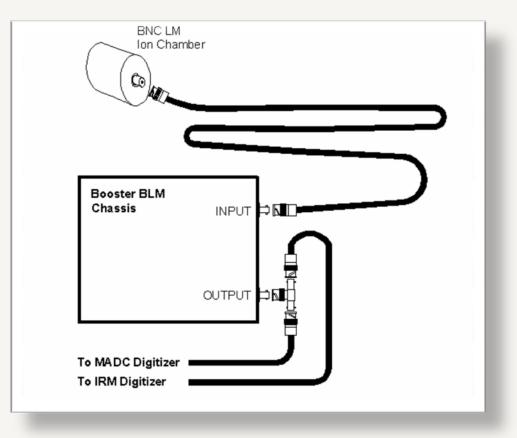
B:BLMS06

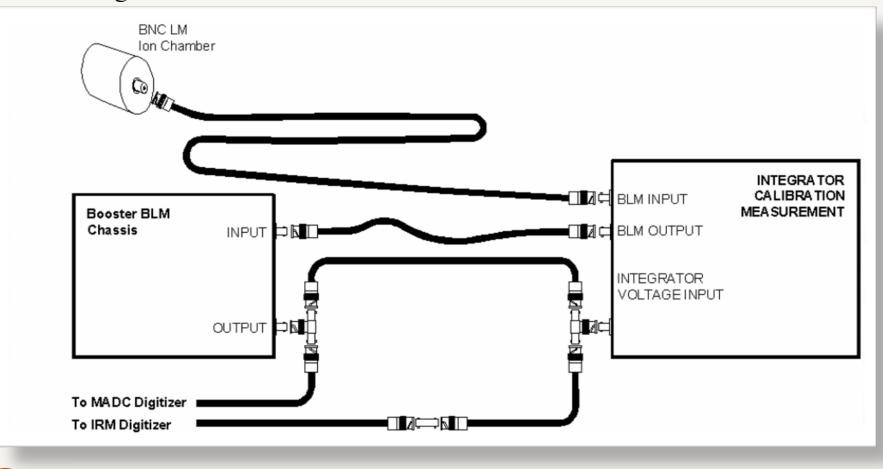


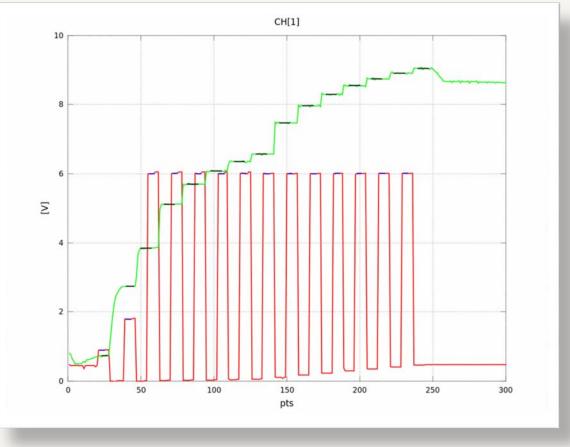
Ref. Beams-doc-3795-v1

4/11/2013

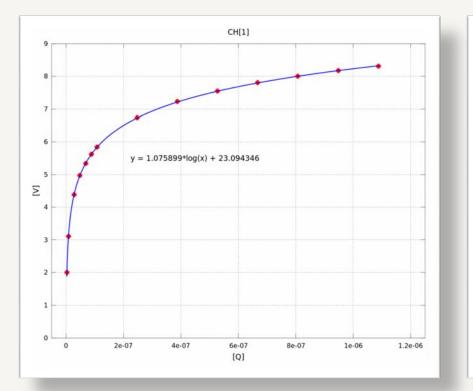
Ensure The New BLMs are Scaled Like the Current BLMs

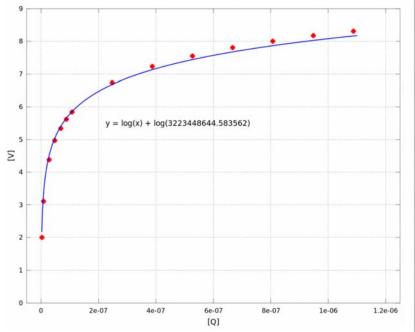

- The current BLMs have been correlated with the activation of areas in the tunnel.
- The new BLMs should be scaled the same as the current BLMs so as not to undo our understand.
- Effort is being made to get an "as-found" measurement of the current BLM's scaling.


Booster BLM Upgrade

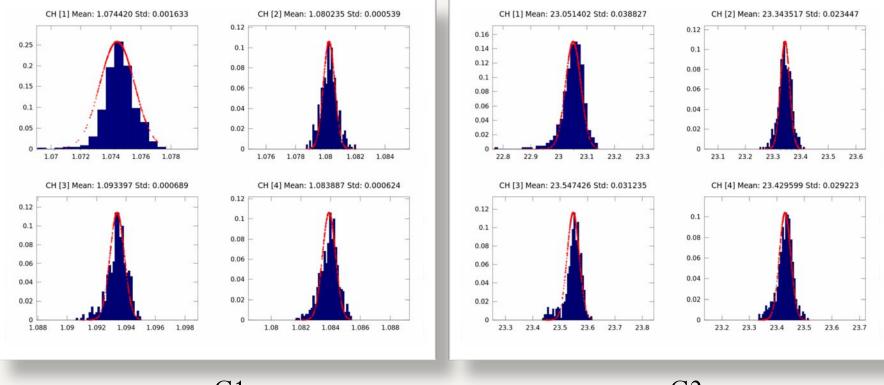

4/11/2013

Standard BLM Cabling




Cabling in 1 of 4 channels into the calibration unit.

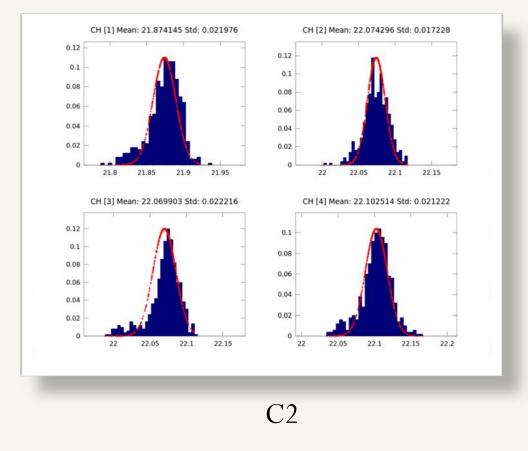
Integrated Output Voltage and Vcap vs. Time



Y = C1 * Log(x) + C2

Y = Log(x) + C2

4/11/2013



C1

C2

Y = C1 * Log(x) + C2

40

Y = Log(x) + C2

4/11/2013

What's Next? (from Oct 2010)

- Proceed with the "as-found" measurement of the current BLM Log integrators.
 - Finalize and document the current scaling, scaling for the new integrators and the conversion between the two.
- Program and test the scaling for the new integrators.
 - Temporarily assign "Test" BLM devices to one set of 12 BLMs so that the current system can continue to run.
 - Check that the scaling of the new system gives the desired results by moving the BLM input cables between the old and the new.

What's Next?

- Make the leap to the new integrators in one location.
 - Dabbel-up the front-end with the final ACNET devices.
 - Move the cables.
 - Evaluate for 1 week.
- Change over the remaining 48 BLMs.
- Get more BLM equipment from the Tevatron and upgrade the remaining Booster BLMs.