口 Fermilab

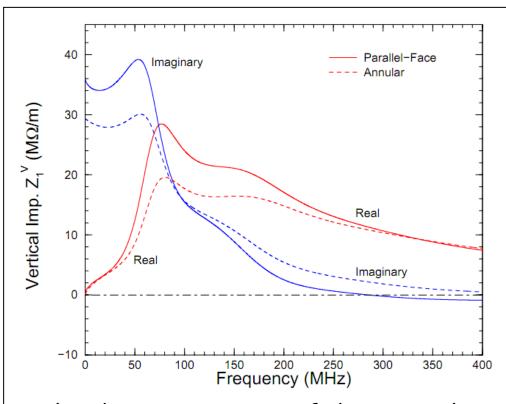
Transverse Instabilities

Valeri Lebedev Fermilab

<u>Contents</u>

- 400 MeV line
- Booster Acceptance
- Injection scenarios
- Conclusions

Proton source workshop Fermilab December 7-8, 2010


Transverse Impedance

- The transverse Booster impedance is mainly driven by the resistivity of dipole laminations
- Its peak value is achieved at frequency ~100 MHz
- Its maximum value is close to the impedance "careless limit"

$$Z_{\max} = \frac{Z_0}{2\pi} \left(\frac{\sum L_F}{a_F^2} + \frac{\sum L_D}{a_D^2} \right)$$

- For L_{dip} = 2.89 m, a_F = 2.08 cm, a_D = 2.86 cm and 48 dipoles of each type we have
 - $Z_{max} \approx 30 \ M\Omega/m$

• My estimate $Re(Z_{\perp x,y})_{max} = 7$ and 5 M Ω /m (β -function weighted)

Real and imaginary parts of the vertical dipole impedance Z_V of the booster laminated magnets are in the parallel-plate approximation with plate (solid) and the annular ring approximation with radii equal to half the plate-separation (dashed) K. Y. Ng, "Coupling impedances of laminated magnets", FN-0744, 2004

Transverse Instabilities

The maximum instability growth rate (no Landau damping)

$$\lambda_{\max} = \frac{\operatorname{Re}(Z_{\perp})I_{beam}R}{2(mc^2 / e)\beta^2 \gamma v}$$

- For 10 M Ω /m, R=75.5 m, 4.5·10¹² protons we obtain 0.025 turn⁻¹
- Non-zero chromaticity slows down or stabilizes the instability
 Suppression of instability at the frequency range of ~100 MHz can be difficult if possible