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1 The current ratio approach

The starting point is the usual cavity voltage equation with a voltage step during beam time:

VCi = 2RLiIgi(1 − e
− tω0

2QLi ) − 2RLi(1− r)Igi(1− e
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In this equation, t0 is the fill time which is assumed to coincide with the beam arrival time, r is the fill-time-
to-flat-top voltage ratio (i.e. Vflat top = r × Vfill time), QLi, RLi, Igi and Vci are the loaded Q, the loaded
resistance, the forward current and the voltage of cavity i and are specific to each cavity.

The usual approach to solving QL for flat gradient during flat top consists of nulling the time derivative
of the equation above. This results in the following equation for QLi
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The problem with this equation is that Igi is a function of QLi. Indeed, the forward power to cavity i can
be calculated as:
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1
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2
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or
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√
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(4)

Making use of the fact that RLi = 1
2QLiR/Q, the equation above can be re-written as
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√
4PKi

QLiR/Q
(5)

This shows that even if the forward power to cavity i is kept constant, changing QLi will change the current
going to cavity i. From an RF point of view, this is simply explained by the fact that changing the loaded
Q will determine how much power gets reflected.

As a consequence, a fixed waveguide power distribution determines the power ratios between total klystron
power and cavity forward powers but it is wrong to assume that it translates into a fixed current distribution,
independent of QL settings.

2 The power ratio approach

To solve for QL without making the assumption that the current ratios are independent of QL settings, one
can replace Igi by its definition from Eq. 4 in Eq. 1. The cavity voltage equation becomes:
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Making use of the following identity RLi = 1
2QLiR/Q, the cavity equation becomes:
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Zeroing the time derivative to get a flat gradient gives√
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which can be rewritten as
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One needs to solve for QLi using the equation above. This can be done using a solver but a solution
cannot always be found. When a solution exists, typically, 4 solutions are produced, two real positive and
two complex.

3 Numerical example

Starting from Katalev’s power distribution [1], for a beam current Ib=4.5 mA, R/Q=1036 Ω, a fill time
t0=500 µsec and a ratio r =0.82 (including beam compensation), one can find the following QL solutions for
ACC6 and ACC7:

ACC6 cav1 cav2 cav3 cav4 cav5 cav6 cav7 cav8
PKi [kW] 313.1 336.2 291.5 281.6 113.2 119.6 178.9 175.3
QLi [×106] 2.02 1.98 2.07 2.10 4.69 3.98 2.61 2.64

ACC7 cav1 cav2 cav3 cav4 cav5 cav6 cav7 cav8
PKi [kW] 250.7 250.7 268.3 268.3 365.2 365.2 201.5 201.5
QLi [×106] 2.20 2.20 2.14 2.14 1.93 1.93 2.43 2.43

Note that changing the cavities loaded Q will also affect their operating gradient. No consideration was
made in this analysis to assess whether the new operating gradients exceed the cavity quench limits after
changing QL. Solving Eq.8 only guaranties a flat gradient, not a safe one.
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