VME-DDS Frequency and Phase Control
Module, Part II

Memory and Data Processing

June 6, 2011
Revised February 17, 2017

Craig Drennan

Page 1 of 16

Page 2 of 16

I. Introduction

This document is written to provide details on the layout and function of the memory and data processing on
the VME-DDS Module so that there is an understanding of

1. How memory is accessed and how the different data processing functions and the VME interface share
the memory and the address data busses.

2. How the Flash memory is used to store and restore (back-up and boot-up) memory data and registers
used by the module.

3. What is the standard sequence in which the various processes are executed and how the processes are
relegated to an Update Interval, when the Booster is not actively accelerating beam and a Run Interval
when it is.

With this information we hope to understand how future parameters and processes can be added and what
rules those processes would need to adhere to.

II. Managing Process Parameters
The parameters used by the module are typically scale factors, offsets, time delays, and process flow control
switch settings. Three memory words in shared memory are associated with each parameter. Thereis a
"Setting", a "Reading" and an "Update Flag". For each parameter there are defined in Read-Only Memory
(ROM) a maximum, a minimum and a default. And finally, there is a dispatch table in the ROM memory of
address pointers to the Run-Mode parameter registers. It is the value in these register that is actually
accessed by the Run-Mode processes.

The Shared Memory Parameter Update Process was described in the document VME-DDS Frequency and
Phase Control Module, Part I. The details to follow, will aid in the addition or subtraction of the operator
programmable parameters.

1. The maximum, minimum and default parameter values, and the address pointers to the Run-Mode
registers are located in ROM. This ROM memory is actually RAM memory in the FPGA that cannot be
written and is initialized by the contents of a memory initialization file (*.mif) when the FPGA code is
compiled. The particular file used is “SM_0x000000_0x002000_init.mif” in the Upper FPGA project
folder.

2. The “mif” file should be opened with a simple text editor like Microsoft’s NotePad. If the file is opened
in Altera Quartus the comments cannot be read and the comments would be eliminated if saved from

Quartus.
3. Apart from the comments, which are indicated by double dashes “- -“, the “mif” file has two columns
delimited using a colon “:”. Both columns are given as Hexadecimal values. The first column is

basically an index, but a physical memory address can be determined. The value at each index is 4
bytes, so the physical address is the index times 4 plus the memory offset at which the memory block is
located. This ROM memory is part of the Shared Memory Block which begins at address 0x000000.

Page 3 of 16

4. The Integer Parameter Dispatch Table begins at index 0x040, or physical address 0x100. A sample of

this section, at the time this document was written, is below.

040 0003F800; -- Address of the Injection Frequency Variable
041 0003F804; -- Address of the Number of Injections Points Variable
042 0001F000; -- Address of the Curve Start Delay from Trigger Variable
043 : 0001F004; -- Address of the Reverse Step Size Variable
044 0001F008; -- Address of the Phase Error Gain Exponent, y (gain =2"y)
045 0001F00C; -- Address of the Extraction Phaselock Frequency
046 0001F010; -- Address of the Phase Drive Proportional Gain
047 0001F014; -- Address of the Phase Drive Integral Gain
048 0001F018; -- Address of the Transition Time Interval, microseconds
049 BADOF349;
04A BADOF34A;

o

o

5. The parameter maximums, minimums and defaults begin at index 0x280, or physical address OxA00. A

sample of this section is below.

-- Frequency parameters are computed assuming a 480 MHz system clock

-- for the DDS components. FTW = 2732 * Fout / Fsysclk = 8.947849 * Fout

280 15555590; -- Maximum Injection Frequency = 40 MHz
281 1000002C; -- Minimum Injection Frequency = 30 MHz
282 14369D3B; -- Default Injection Frequency = 37.9 MHz

-- Time delays are based on counting the FPGA logic clocks that have
-- a period of 20 nano-seconds.

283 : 000003E8; -- Maximum Number of Injection Points = 1000
284 0000000A; -- Minimum Number of Injection Points = 10
285 000001F4; -- Default Number of Injection Points = 500
286 000249F0; -- Maximum Curve Delay = 3 milli-seconds
287 000000E1l; -- Minimum Curve Delay = 4.5 micro-seconds
288 000186A0; -- Default Curve Delay = 2 milli-seconds
289 00002710; -- Maximum Reverse Step = 10000

28A 00000001; -- Minimum Reverse Step = 1

28B 00001BF6; -- Default Reverse Step = 7158

—-- The phase error gain term is actually the exponent y such that the
-- gain = 2"y.
28C : 00000010; -- Maximum Phase Error Gain y = 16

Page 4 of 16

Phase Error Gain y =1
Phase Error Gain y = 8

Extration Phaselock Freq =

Extration Phaselock Freg
Extration Phaselock Freq

Drive Integral Gain =
Drive Integral Gain =
Drive Integral Gain =

Transition
Transition
Transition

Time Interval
Time Interval
Time Interval

6.

28D 00000001; -- Minimum
28E 00000008; -- Default
28F 10000000; -- Maximum
290 0occceeec; -- Minimum
291 0OE14B64C; -- Default
292 00000080; -- Maximum
293 00000001; -- Minimum
294 00000001; -- Default
295 00000080; -- Maximum
296 00000001; -- Minimum
297 00000001; -- Default
298 00000019; -- Maximum
299 0000000A; -- Minimum
29A 00000014; -- Default
29B : FFFFFFFF;
29C 00000000;
29D DEFA4170;

o

o

The “mif” file will also initialize the dual-port “Shared Memory” RAM locations that are the Flag,

Setting and Reading of the parameters. If the DDS module starts up normally these initial values will

be over written with the Boot-up values from the Flash memory. For reference the Flag, Setting and

Reading initialization values start at index 0x5C0, address 0x1700.

Besides the memory initialization file, the FPGA code uses memory map constants defined in the file

“dds_vme_constants.vhd”.

In order to add or remove a parameter in the DDS application the memory initialization file,
“SM_0x000000_0x002000 _init.mif” needs to be edited to include the new address of the Run-Mode
register in the Parameter Dispatch Table and the maximum, minimum and default values for the new

parameter. The relative order of the register addresses and the set of maximums, minimums and

defaults, and the Flag, Setting, and Reading set needs to be maintained. For instance, the third address

in the dispatch table will be associated with the third set of maximum, minimum, default and the third

set of Flag, Setting, and Reading.

In the file “dds_vme_constants.vhd”, the constant “SM_PARAM_BLOCK_LAST” needs to be set to the
memory address of the last parameters Reading. This is the variable used by the parameter update

process to determine when this process has been completed.

Page 5 of 16

III.

Sequence and Timing
There are four main intervals in which different application processes run in the DDS module. The first is
power on, boot-up. This involves the timing of resets, the sequencing of power to the analog sections of the
module and the initialization of memory and registers from non-volatile, Flash memory. The second interval is
the Active interval which begins with the Booster reset event (TCLK trigger) and extends 36 ms. During this
interval the Booster acceleration controls, and frequency and phase curves are active. The third interval is the
Update interval in which changes made by ACNET through the front-end processor are managed. This interval
follows each Active interval and extends 24 ms. And the final interval is the Initialization interval, which
follows the Update interval and precedes the next Active interval, in which all of the initial values for the
frequency and phase curves are set.

II1.1 Power On, Boot-Up Interval

The sequence for the power on reset is shown in Figure 11l.1.1. The majority of the logic is held in reset by the
signal Reset_n (active low). Before this reset is released the PLL’s in both the Upper and Lower FPGA’s are
reset and the power supplies for the analog to digital converters are sequenced on according to the AD7625
requirements.

The ADC’s have three different power sources. There is the 2.5V which comes up with the +5V VME crate
power. An isolated 2.5V rail comes up next followed by the isolated +5V rail. Finally, once the ADC’s are
powered the module analog inputs are switched on, that is the input protection relay contacts are closed.

The Upper FPGA transmits a copy of the Reset_n signal to the Lower FPGA. This copy is released 2 logic clocks
before releasing its own version in order for synchronization of the reset to occur in the Lower FPGA. The
Upper and Lower FPGA will come out of reset at the same time, synchronous to the logic clock.

Page 6 of 16

_|a: sos
. b= 2FS(|]W £

wsa
ae 4w — Dasi 9T ——
ae P f:|_
P ssa sea _ 034201 LON
5 soo

=
|_|.._ Hia 2 ..
sasM 9 |
ac aca aea _ d343 07 LaN

jEpEREREE

jJERE RSN EEEEE SR -
[

—
jEREEEEEEEEEREEEEEEE .

(J2mo7) U EsaY
syndu"euy

A0G BU3
MGTBUT

(M0 2aw) M4 3@say
{42 mo7) Hes
{4mmoT) paxaoT 11d
Ao 91807

1953y JamoT 17d H1D 7 H3dK

U jasay

U a0 13say

114 5007 @52y

Hels

pa3207 114

Ao 91807

19534 T1d 10 43X
1Esay dny amod i odd
BUOPT YU IFadd

ndu| 300

iming.

Figure 111.1.1 DDS logic reset t

Page 7 of 16

Upon coming out of reset, the process dds_startup_sequence runs to initialize the shared memory, parameter
registers and curve memory with data stored in the FLASH memory. This startup process does pause for 1.3
ms after coming out of reset to ensure the other processes have initialized and stabilized.

The following sequence is executed by the dds_startup_sequence process.

1. Trigger the Bootup process which transfers the active FLASH memory page to the Shared Memory
RAM.

2. Setthe Verify All signal and trigger the Update SM_Process. This process updates the parameter
registers with the contents of the parameter Settings word in Shared Memory. Limits on the
parameters are checked and default values are set if any of the Settings words are out of range.

3. The CTBFREE semaphore used for accessing the curve buffer interface between the DDS-VME module
and the front-end processor is initialized (high).

4. The status bits for each curve buffer is set to indicate that the curve needs to be interpolated and or
loaded from Shared Memory to the curves memory, and then the Curve Interpolation Process is
triggered eight times to process the eight curves implemented in the DDS-VME module.

5. Finally, DDS_Ready is signaled indicating that the module is ready to run upon receiving the next 15 Hz
Booster trigger.

6. DDS_Ready going active will also result in signaling Reset_Run_Curves which initializes the DDS
Frequency and Phase curves.

II1.2 The Active, Update and Initialize Intervals

The Active, Run Interval begins with the rising edge of the 15 Hz Booster trigger input. This input is not
synchronous to the Logic Clock and is synchronized within 2 clocks to produce a single clock wide start_cycle
pulse. The start_cycle pulse triggers the Process_Timer state machine out of idle into a state that waits for the
delay specified by the operator controlled parameter “Curve Delay”. After the initial programmed delay, the
Process_Timer will set the Run_Curves signal to begin the computation and updating of the DDS Frequency
and Phase words. At this time the Process Timer also starts generating a 1 us update pulse which is used to
time the updating of the DDS’s.

The Active, Run Interval ends 36 ms after the occurrence of the start_cycle pulse. With this, the Update
Interval begins by setting the Start_Update_Period signal. Start_Update_Period triggers the
dds_update_sequence which executes the following sequence.

1. Trigger the SM_Update_Process. This process will poll each of the parameter “Flags” to see if new
parameter values have been set by the front-end processor. For each Flag found set, the new
parameter Setting is tested against the parameter’s limits, the parameter register is updated and the
parameters Reading word is updated with the new value of the parameter register. If any of the
parameters are updated, the Parameter_Changed signal is pulsed signaling a backup to FLASH
memory.

2. Trigger the Curve_Req_Process. This process will poll each of the new curve and curve read request
semaphores to see if the front-end processor wishes to Write or Read one of the curve buffers. If so,
the specified curve is Written or Read, to or from the Shared Memory interface curve buffer. If a curve

Page 8 of 16

is updated from the front-end processor the Curve_Changed signal is pulsed signaling a backup to
FLASH memory, and a status bit for the curve is set indicating that the curve buffer needs to be
interpolated and or Written to the curve’s memory.

3. Trigger the Curve_Interpolation process. This process polls the curve status bits to find the “first” curve
that needs to be interpolated and or written from the curve’s buffer to the curve’s memory. Only one
curve will be interpolated/updated per Update Interval.

4. The final task of the dds_update_sequence is to service the backups to FLASH memory. Until the end
of the Update Interval, the backup process will be granted access to the Shared Memory via the main
databus.

The Bootup and Backup processes are described in Part | of the VME-DDS Module Design Manual. What we
would like to expound on here is that the FLASH Write (or programming) process can take a full couple of
seconds to accomplish. Below are some approximate values for how long things take.

FLASH block unlocking and initiation of the erase cycle 1.8 us
FLASH block erase cycle 750 ms
Writing the 32 word (16 bit) programming buffer 7.6 us
Programming the FLASH block from the 32 word buffer 432 us
Writing Shared Memory in 1,280 programming buffer cycles 470 ms

The management of the FLASH backup process is done with cooperation between the dds_update_sequence
and the Flash_Interface process. The dds_update_sequence executes the short duration tasks, the FLASH
block unlocking and the initiation of the erase cycle and the writing of the 32 word buffer. Access to the
Shared Memory and control of the databus is needed for only short intervals. The Flash_Interface process
triggers and monitors the longer processes, the block erase cycle and the programming of the FLASH block
from the 32 word buffer cycle. The Flash_Interface process indicates when it is ready to have more data
written to the 32 word buffer by setting the Flash_Bus_Request signal. This request is granted by the
dds_update_sequence process setting the Flash_Bus_Permit, but only during the Update Interval, after all of
the other update tasks listed above have been completed. The Flash _Bus Request signal is cleared each time
a 32 word buffer write is completed.

The Update Interval ends 60 ms after the occurrence of the start_cycle pulse. With this, the Initialize Interval
begins by pulsing the Reset_Run_Curves signal. Reset_Run_Curves triggers the Freq_Phase_Controller process
to reset its curve pointers and write the first Frequency and Phase words to the DDS’s. Note that the
Frequency and Bias curves were ramped from their final values back to their initial values beginning at the
start of the Update Interval. Also the 4 us to 1 us curve interpolation processes are also loaded with the first
and second curve points.

Page 9 of 16

&

ELTeE el

[

2z S

polad s1epdn 3Es

saAlnTuny

a|qeuq Jaw] syepdnsn T

B|geUs JaLUn BpAy

3Pl F1E15 4L 580014

a|xAT3ams
_| 188811 ZHST 1335009

su b9
su g
! suogg
7 _....|%Bm__u AN ————=
. .
jEAla3ul 31Ul " Tleaisiul aiepdn T T eAdlaiul sal3oe e Aelap uc 11em
ces iee
o6 et PN
o @ LA a0k
N 0o oo

e b

iming.

Figure I11.2.1 Process Timer t

Page 10 of 16

II1.3 Run Interval Timing of DDS Frequency and Phase Updates

During the Run interval the frequency and phase of the DDS outputs are updated every microsecond. The
value of the frequency and phase is computed as the sum of system feedback variables, such as radial beam
position and beam to reference phase error, and feed forward frequency curve and phase curve values.
Figure 111.3.1 is a block diagram of the computation currently specified.

TRANSITION

ComPARE FREGUENCY TO FrREQ. TRIG.
FREQUENCY CLRVE L | TrigeeR TrE TRANSITION
RAM Memory ’ GaTes
PHASE ERROR IN Curve PLAYER
FroM PHASE
BoosTer RF
DETECTORS . 7 — E+ FREQUENCY = Boc
IERD
BPFM LO RF
+ ™ 005 0
o uT
PARAPHASE PRUéJRS:f‘IMEU + <
BEAM PRESENT SIGNAL CURVE FROM Prase ‘A’
AcceenrsTor Prase Lok Enasce H—\ INTERNAL OFFSET 28.3 MHz
J MEMORY
CURVE
REFERENCE Prase A RE
TRANSITICN TRIGEER . PHASE PHASE "A » DDS Qut
. 150 OFFSET 3
ROTATES OW
AT TRANSITION) Worp
Prase CONTROL INPUT
From RapiaL Posimon
CONTROLLER
PHASE B RF
PHase ‘B’ | DDS Qut
OFFSET b 4
WarD
Uszr 180 DG
FROGRAMMED OFFSET

PHase "B
OFFSET
CurvE

(FOR
CURRENT RF
CONMFIG.)

Figure 111.3.1 Frequency and phase computation block diagram.

II1.3.1 Curve Interpolation
The frequency and phase curves values are stored assuming a 4 us interval between points. Curve points for

the 1 us updates are interpolated from these 4 us points as the curves are playing out. Figure Il.3.2 is a timing
diagram that illustrates the interpolation process. Two of the 4 us points are used in making the interpolation.
The 4 us frequency or phase curve points are represented by X(k+1) and X(k+2), where k =0,1,2, ..., 10240. The
1 us interpolated result is Y out. Upon power up of the module or within the Initialization Interval, the X(0)
and X(1) values are preloaded into the computation and You is initialized to be X(0).

Page 11 of 16

Rl []
EET
R . , T
sk (1)x | dai5.£+(0)X | deg.z+(0)x i da15+{0)x I [
Q _/ \Q\ / \\ \ Q_ \\ \ 1Xali 136 (3n0qe sB)
Bisx FAs+(1x) | Wx Jo s+l Bis.£+{0lx I da1s,2+{0)x X (dayg +3n04 =) daig+{0lx oA baN
i X (2 I o) | i v /X~ X | , .t__,x.,mt_”_x =daig
] x / X /] (0x] (b
i (@x I £ I i 0 I (e
i \ [/ J| Ji I aydwegaauenpy
J|_qwnoa 1 |/ 7 unca)]/ € 3unoa) | zynoa) |/ 1 wunoa I (noa Junoa"3jepdn
i L/] Ji Ji I Juno3pdn1s)
Q_ [§ /L \\ /|\ Q_ [\\ /L atepdndizun
Q_ /|\ § [\\ [Q_ \\ [PENES)
J /%] I} /W] Ji D1 J D Ji D YT 500 010 ZHHSD)
] \] | I} | i s I} \ T amdisa
Q_ /|\ \\ [\\ [Q_ /|\ \\ [alepdn sny
i [I / [saunguny

LU L L L L L L L L

A0 ZHN 05

iming

Figure 111.3.2 The interpolation computation and t

Page 12 of 16

At the end of the Run Interval and the beginning of the Update Interval the frequency curve needs to be
ramped, or rewound, back to its initial value. Step changes in the LLRF frequency reference will cause sparking
in the Booster Accelerating Cavities, and hence the DDS frequency must be changed gradually as it is returned
to the initial curve value. Since this rewind process occurs during the interval when other processes are using
the data bus to update and backup memory, the rewind process has been implemented to avoid needing to
use the data bus to access the curve. The approach is to use a constant slope ramp by applying a constant
decrement, Reverse_Step, to the frequency value each microsecond. The value Reverse_Step is an operator
programmable parameter.

II1.3.2 Analog Input Synchronization

It is desired that the playing out of the frequency and phase curves and sampling of LLRF feedback variables
through the Booster acceleration cycle be as consistent and repeatable as possible. With regard to the timing,
we try to synchronize everything to the beginning of the Run Interval, which begins after the variable,
operator programmed delay, after the occurrence of the 15 Hz trigger. The frequency and phase curves are
played out in sync with the Update Pulse, which is synchronized to the beginning of the Run Interval. The
ADC, analog to digital converters, which digitize the LLRF feedback variables sample at a constant 5 MHz and
need to be re-synchronized each cycle. By re-synchronizing the ADC samples the timing between the arrival of
the samples and the control computations is fixed. We can also minimize the processing latency contributed
by the ADC sampling.

The analog to digital converter interface is explained in detail in Part I, the Module Design Manual. Figure
[11.3.2.1 illustrates the synchronization timing. The ADC interface outputs the convert pulse and the serial data
clock to the ADC converters. The ADC converters echo the data clock back to the interface along with and in
sync with the serial data signal. The basic timing of the ADC interface is to begin clocking data out of the ADC
as soon as the MSB, most significant bit, of the data becomes available, and then to trigger another conversion
as soon as the ADC has completely finished the previous acquisition. Data will still be clocking out of the ADC
when the next conversion is signaled.

To synchronize the ADC conversions with the start of the Run Interval, the signal Run_Curves that goes high at
the start of the Run Interval triggers the Convert_Sync signal to go high for 340 ns. The ADC interface will test
the Convert_Sync signal just before it would normally signal the next ADC conversion. When Convert_Sync is
found active, another ADC conversion is not signaled, but the clocking of ADC data out from the previous
conversion is continued. Once this data transmission is completed the ADC interface waits for the end of the
340 ns sync interval, and then restarts the cycle of ADC conversions in sync with the end of the Convert_Sync
signal.

Page 13 of 16

- NG 3035 DY
0sa
T = non " des

T H% - HEB T d% W) [BLIEE 04 HE FAPY
7 us H ES ¥ [ACE [0"STRNO =0 D0Y
T [[ER-TE
§|_ _ [F]IUNOD7HS LOM = 748 eU3
L E|_ _ [FRunas™ys
o [sifvedarfweor] o] e[eJ o] s]e = =] ¢] 7 [efafedwfof sTe[e[os[e[eTe[e[o T[arfeee eefor] e[e e[s e e]z]+] {0 gunoy "y
T e e) e cu o B) 2 5 I) s i e e | 2 2 D e e e ¥va 00y
f——— i SU ErT = asw ————

- ooaToay
T

e XOU SU T = 121 —=

uolysinbay noa uoisinbay uolysinbay JEAd 33U] By S

—= uiW s oF = bIep —

it papuilg MNDTDOY
JoN
_l‘mc 00z = 3ha ——————— HaIAUDD
uea _
A 209
ST ST P ETET TCOT 68 2 & 8 5 ¥ £ £ T PTETETTEOT 6 % £ 8 5 ¥ £ T T STSTPTETET LT OT & % £ 8 5 ¥ £ £ T
NS EREDERARED G AR AREDED €D &R St
_ .8|_ _|_ 31ED {200 P,IUAS

Ho1d TiEm TAU3 VEE T4 W HOTd W 03Em 0AUTY S udsisned W auds yEm Y TAuI) HEE Tid HOTd W TaEm E WEIE Td X 2|13
[
JUAG HEAUDD suay Buppdwes gy oy shouuydse
_In‘ 0 BALJE Y} Wy sU 048 —— "= 51 2UAS HBAUDD 34340 B ALY
JUAS MEALOD
o
ML UL UL UL UL UL U UL UL LU e =eroms

ML L L T WU I e M r gy i raoruruwn THIM 05 {290 130T

UOIBZIUOIYIUASDY §79/AY

Page 14 of 16

Figure 111.3.2.1 ADC synchronization to the start of Run Interval.

II1.3.3 Overall Frequency and Phase Update Computation Timing

From the computation block diagram in Figure I11.3.1 we have that there are five values that are
predetermined and can be setup before the 1 us Update pulse fires. These are the values from the frequency
curve, the reference phase, the paraphase, and the A and B phase offsets. The LLRF feedback control
variables, the Phase Error and the RPOS Phase Drive, need to be sampled and applied to the computation as
close to the moment when the DDS output frequency and phase are updated as possible. The interval of time
between when these analog inputs are sampled and their effect appears on the DDS outputs adds to the pure
delay in the closed loops they are associated with.

Early design documents for the LLRF Booster controls estimated that the acceleration phase lock and the
RPOS, radial position control, could tolerate a delay of 3 us. Due to the long cables that bring the beam phase
and beam position from pickups in the accelerator, and the long cables that distribute the LLRF reference to
the accelerating cavities, a delay of approximately 1.13 us is incurred. The estimate of the current delay in the
LLRF control electronics is

Average analog input sampling delay (0.5 F sample)*-1 0.050 us
ADC converter pipeline delay 0.300 us
Processor instruction and computation delay 0.400 us
DDS pipeline delay 0.360 us
Cable delay 1.134 us

TOTAL = | 2.244 us

Current estimates for the delay associated with the DDS-VME module are below. The new system increases
the closed loop delay by approximately 0.434 us, but the total delay still remains below the 3 us specification.

ADC converter pipeline and data transfer 0.300 us
FPGA computation delay 0.100 us
DDS data update transfer delay 1.000 us
DDS pipeline delay (at 480 MHz system clock) 0.164 us
Cable delay 1.134 us

TOTAL = | 2.698 us

By adjusting the ADC conversion synchronization at the start of the Run Interval, we can time the ADC
interface output strobe to fire just before the Update pulse. The ADC value is immediately applied to the
computation and the result is ready to write into the DDS interface within a couple clocks. Figure 11.3.3.1
shows the timing between the ADC input, the 1 us update strobe, and the changing of the DDS frequency and
phase words at the output of the computations.

Page 15 of 16

TR A o o A O D o B A

ADC_DATA(Phase Err)

ADC_DATA(RPOS Phase)

ADC Strobe

Update Pulse ’—‘
DDS Update Strobe ’7‘}
Get Next Freq/Phase ’—‘
DDS Frequency F(k) + PhErr(k-1) F(k) + PhErr{k) F(k+1) + PhErr(k)
DDS Phase A phsum(k) + RPOS(k-1) PlJuSum(k) + RPOS(k) Phsum(k+1) + RPOS(k)
DDS Phase B phsum(k) + RPOS(k-1) PhSum(k) + RPOS(k) PhSum(k+1) + RPOS(k)
New DDS Freq/Phase l\New Reference
Written Here

Phase Here

Figure 111.3.3.1 DDS frequency and phase computation timing.

Page 16 of 16

