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Computational Electromagnetics

 Maxwell’s equations can be given in differential or integral form
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Frequency domain methods

Time-domain methods

Computational Electromagnetics
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Commercial software packages

 Commercial software packages

Finite-difference time-domain (FDTD)

Method of Moments (MoM)Finite element method (FEM)

Transmission line matrix (TLM)

CST Microstripes

HFSS

ADS Momentum



The Finite-Difference Time-Domain Method



FDTD Books



Yearly FDTD Publications

 The most popular method in computational electromagnetics

Source: Allen Taflove, “A Perspective on the 40-Year History of FDTD Computational Electrodynamics,”
Applied Computational Electromagnetics Society (ACES) Conference, Miami, Florida, March 15, 2006.
Can be found at http://www.ece.northwestern.edu/ecefaculty/Allen1.html



Maxwell’s Equations

 The basic set of equations describing the electromagnetic world

Constitutive relations
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FDTD Overview – Finite Differences

 Represent the derivatives in Maxwell’s curl equations by finite differences
 We use the second-order accurate central difference formula
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FDTD Overview – Cells

 A three-dimensional problem space is composed of cells
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FDTD Overview – The Yee Cell

 The FDTD (Finite Difference Time Domain) algorithm was first established
by Yee as a three dimensional solution of Maxwell's curl equations.

K. Yee, IEEE Transactions on Antennas and Propagation, May 1966.
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FDTD Overview – Material grid

 A three-dimensional problem space is composed of cells
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FDTD Overview – Updating Equations

 Three scalar equations can be obtained from one vector curl equation.
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FDTD Overview – Updating Equations

 Represent derivatives by finite-differences

yx z
x

HE H
t y z


 

 
  

1

0.5 0.50.5 0.5

( , , ) ( , , )( , , )

( , , ) ( , , 1)( , , ) ( , 1, )

n n
x x

x

n nn n
y yz z

E i j k E i j ki j k
t

H i j k H i j kH i j k H i j k
y z




  





  


 



17/60

FDTD Overview – Updating Equations

 Represent derivatives by finite-differences
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FDTD Overview – Updating Equations

 Express the future components in terms of the past components
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FDTD Overview – Leap-frog Algorithm
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FDTD Overview – Updating Coefficients

 FDTD code in FORTRAN

 Number of coefficients will be less if nonconductive medium is assumed
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subroutine update_magnetic_fields
! nx, ny, nz: number of cells in x, y, z directions
Hx = Chxh * Hx &

+ Chxey * (Ey(:,:,2:nz+1) - Ey(:,:,1:nz)) &
+ Chxez * (Ez(:,2:ny+1,:) - Ez(:,1:ny,:));

Hy = Chyh * Hy &
+ Chyez * (Ez(2:nx+1,:,:) - Ez(1:nx,:,:)) &
+ Chyex * (Ex(:,:,2:nz+1) - Ex(:,:,1:nz));

Hz = Chzh * Hz &
+ Chzex * (Ex(:,2:ny+1,:) - Ex(:,1:ny,:)) &
+ Chzey * (Ey(2:nx+1,:,:) - Ey(1:nx,:,:));

end subroutine update_magnetic_fields
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Absorbing Boundary Conditions

 The three-dimensional problem space is truncated by absorbing
boundaries

 Most popular absorbing boundary is Perfectly Matched layers (PML)



Active and Passive Lumped Elements

 Active and passive lumped elements can be modeled in FDTD
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Active and Passive Lumped Elements

Resistor Capacitor Inductor Diode



Active and Passive Lumped Elements

A diode circuit



Transformation from Time-Domain to Frequency-Domain

 Results can be obtained for frequency domain using Fourier Transform

A low-pass filter

S11

S21
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Near-Field to Far-field Transformations

An inverted-F antenna
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Modeling fine geometries

 It is possible to model fine structures using appropriate formulations

A wire loop antenna
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Incident plane wave
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Scattering Problems
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Scattering from a Dielectric Sphere
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Earth / Ionosphere Models in Geophysics

 Snapshots of FDTD-Computed Global Propagation of ELF
Electromagnetic Pulse Generated by Vertical Lightning Strike off South
America Coast

Source: Allen Taflove, “A Perspective on the 40-Year History of FDTD Computational Electrodynamics,”
Applied Computational Electromagnetics Society (ACES) Conference, Miami, Florida, March 15, 2006.
Can be found at http://www.ece.northwestern.edu/ecefaculty/Allen1.html
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Wireless Personal Communications Devices

Source: Allen Taflove, “A Perspective on the 40-Year History of FDTD Computational Electrodynamics,”
Applied Computational Electromagnetics Society (ACES) Conference, Miami, Florida, March 15, 2006.
Can be found at http://www.ece.northwestern.edu/ecefaculty/Allen1.html
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Phantom Head Validation at 1.8 GHz

Source: Allen Taflove, “A Perspective on the 40-Year History of FDTD Computational Electrodynamics,”
Applied Computational Electromagnetics Society (ACES) Conference, Miami, Florida, March 15, 2006.
Can be found at http://www.ece.northwestern.edu/ecefaculty/Allen1.html



Ultrawideband Microwave Detection of Early-Stage Breast Cancer

Source: Allen Taflove, “A Perspective on the 40-Year History of FDTD Computational Electrodynamics,”
Applied Computational Electromagnetics Society (ACES) Conference, Miami, Florida, March 15, 2006.
Can be found at http://www.ece.northwestern.edu/ecefaculty/Allen1.html



Focusing Plasmonic Lens

Source: Allen Taflove, “A Perspective on the 40-Year History of FDTD Computational Electrodynamics,”
Applied Computational Electromagnetics Society (ACES) Conference, Miami, Florida, March 15, 2006.
Can be found at http://www.ece.northwestern.edu/ecefaculty/Allen1.html



Image from: http://www.nvidia.com/object/GPU_Computing.html

NVIDIA® Tesla™ C10 Series
GeForce GTX 285 (240 cores)
Processor clock =1.4 GHz
Bandwidth = 159 GB/s
Memory = 2 GB (GDDR3)

Intel® Quad Core
Processor   ~ 3 GHz

Copyright © 2010 Demir and Elsherbeni

NVIDIA® Tesla™ C20 Series (Fermi)
GeForce GTX 480 (480 cores)
Processor clock =1.4 GHz
Bandwidth = 177.4 GB/s
Memory = 1.5 GB (GDDR5)

Graphics Processing Unit (GPU) Computing

 GPU computing is the use of a GPU (graphics processing unit) to do
general purpose scientific and engineering computing.
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CPU vs GPU

The GPU Devotes More Transistors to Data Processing



CPU vs GPU

http://www.nvidia.com
Floating-Point Operations per Second
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Programming FDTD for GPU Platform

 OpenGL
 S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, “Graphics Processor Unit (GPU) Acceleration of

Finite-Difference Time-Domain (FDTD) Algorithm,” Proc. 2004 International Symposium on Circuits and
Systems, vol. 5, pp. V-265–V-268, May 2004.

 S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, “Acceleration of Finite-Difference Time-Domain
(FDTD) Using Graphics Processor Units (GPU),” 2004 IEEE MTT-S International Microwave Symposium
Digest, vol. 2, pp. 1033–1036, Jun. 2004.

 S. Adams, J. Payne, and R. Boppana, “Finite Difference Time Domain (FDTD) Simulations Using
Graphics Processors,” Proceedings of the 2007 DoD High Performance Computing Modernization
Program Users Group (HPCMP) Conference, pp. 334–338, 2007.

 High Level Shader Language (HLSL)
 N. Takada, N. Masuda, T. Tanaka, Y. Abe, and T. Ito, “A GPU Implementation of the 2-D Finite-Difference

Time-Domain Code Using High Level Shader Language,” Applied Computational Electromagnetics
Society Journal, vol. 23, no. 4, pp. 309–316, 2008.

 Brook
 M. J. Inman, A. Z. Elsherbeni, and C. E. Smith “GPU Programming for FDTD Calculations,” The Applied

Computational Electromagnetics Society (ACES) Conference, Honolulu, Hawaii, 2005.
 M. J. Inman and A. Z. Elsherbeni, “Programming Video Cards for Computational Electromagnetics

Applications,” IEEE Antennas and Propagation Magazine, vol. 47, no. 6, pp. 71–78, December 2005.

 Compute Unified Device Architecture (CUDA)

 OpenCL
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Compute Unified Device Architecture (CUDA)

 NVIDIA® CUDA™ is a general purpose parallel computing
architecture

Advantages
 Standard C language for parallel application development on the

GPU
 Standard numerical libraries for FFT and BLAS (Basic Linear

Algebra Subroutines)
 Scattered reads – code can read from arbitrary addresses in memory.
 Shared memory – CUDA exposes a fast shared memory region

(16KB in size) that can be shared amongst threads. This can be used
as a user-managed cache, enabling higher bandwidth than is possible
using texture lookups

 Faster downloads and readbacks to and from the GPU
 Full support for integer and bitwise operations, including integer

texture lookups.
 Steep learning curve

Source: http://en.wikipedia.org/wiki/CUDA
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Compute Unified Device Architecture (CUDA)

Disadvantages
 Texture rendering  is not supported.
 For double precision there are some deviations from the IEEE 754

standard
 In single precision, denormals and signalling NaNs are not supported;

only two IEEE rounding modes are supported and the precision of
division/square root is slightly lower than single precision.

 The bus bandwidth and latency between the CPU and the GPU may be a
bottleneck.

 Threads should be running in groups of at least 32 for best performance,
with total number of threads numbering in the thousands.

 Unlike OpenCL, CUDA-enabled GPUs are only available from NVIDIA

Source: http://en.wikipedia.org/wiki/CUDA
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Grid of thread blocks
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Memory hierarchy
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Heterogeneous programming
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FDTD using CUDA

Performance Optimization Strategies in CUDA

 Structure the algorithm in a way that exposes as much data parallelism as
possible.

 Ensure global memory accesses are coalesced whenever possible.

 Minimize the use of global memory.

 Use shared memory to avoid redundant transfers from global memory.

 Maintain a high level of occupancy.

 Use a multiple of 32 threads for the number of threads per block as this
provides optimal computing efficiency and facilitates coalescing.

CUDABest Practices Guide, http://www.nvidia.com/object/cuda_develop.html.



2010 IEEE AP-S URSI, Toronto, Ontario, Canada 46/60

Achieving Parallelism (xyz-mapping)

 Mapping of threads to cells of an FDTD domain using the xyz-mapping.
 Each thread is mapped to a cell

block_dim_x = number_of_threads;
block_dim_y = 1;
n_blocks_y = nz;
n_blocks_x = (nx*ny)/number_of_threads +

(nx*ny)%number_of_threads==0?0:1);
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Achieving Parallelism (xy-mapping with for loop)

 Mapping of threads to cells of an FDTD domain using the xy-mapping.
 Each thread is mapped to a cell in an xy plane cut
 Then the thread processes all of the cells in the same column in a for loop

block_dim_x = number_of_threads;
block_dim_y = 1;
n_blocks_y = 1;
n_blocks_x = (nx*ny)/number_of_threads +

(nx*ny)%number_of_threads==0?0:1);
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Coalesced Global Memory Access

 Global memory should be viewed in terms of aligned segments of 16 and
32 words

threads

memory

threads

memory



RRVS,  November 28, 2010 49/60

Uncoalesced Global Memory Access

threads

memory
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Coalesced Global Memory Acces

 Unfortunately in FDTD updates the operations are dominated by memory
accesses rather than arithmetic instruction.

 The memory access inefficiency is the bottle neck for the efficiency of
FDTD on GPU.

 Global memory bandwidth is used most efficiently when the simultaneous
memory accesses by threads can be coalesced.

 The FDTD domain is
extended by padded cells
such that the number of cells
in x and y directions is an
integer multiple of 16.
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Use of shared memory

 Because it is on-chip, the access to shared memory is much faster than
the local and global memory.

 Shared memory is especially useful when threads need to access to
unaligned data.

subroutine update_magnetic_fields
...
Hy = Chyh * Hy &

+ Chyez * (Ez(2:nx+1,:,:) - Ez(1:nx,:,:)) &
+ Chyex * (Ex(:,:,2:nz+1) - Ex(:,:,1:nz));

...
end subroutine update_magnetic_fields

 , ,yH i j k
 1, ,zE i j k

 , , 1xE i j k  coalesced access

uncoalesced access (use shared memory)



2010 IEEE AP-S URSI, Toronto, Ontario, Canada 52/60

Data reuse

 Data transfers from and to the global memory should be avoided as much
as possible.

 If some data is already transferred from the global memory and it is
available, it is better to use it as many times as possible.

 Therefore, a kernel function can be constructed based on the xy-mapping
in which each thread traverses in the z direction in a for loop by
incrementing k index of the cells.

subroutine update_magnetic_fields
...
Hy = Chyh * Hy &

+ Chyez * (Ez(2:nx+1,:,:) - Ez(1:nx,:,:)) &
+ Chyex * (Ex(:,:,2:nz+1) - Ex(:,:,1:nz));

...
end subroutine update_magnetic_fields

 , ,yH i j k
 , ,xE i j k

 , , 1xE i j k  Already in the memory
(use during the next iteration)
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Optimization of number of threads

 CUDA Visual Profiler is used to determine optimum number of threads

For this test, an FDTD domain with size of 8 million cells is used.

Cpu time versus number of threads per block.
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Code using xyz-mapping
 Code using the xyz-mapping

__global__ void
update_magnetic_fields_on_kernel(int nx, int ny, int nz, float *Ex, float *Ey, float *Ez, ...)
{

extern __shared__ float sEyz[];
float *sEy = (float*) sEyz;
float *sEz = (float*) &sEy[blockDim.x+16];
// ci: cell index
// si: index in shared memory array
int ci = blockIdx.x * blockDim.x + threadIdx.x;
int j = ci/nx;
int i = ci-j*nx;
int si = threadIdx.x; int sip1 = si+1; int nxxyy = nx*ny;
int cizp; int ciyp; float ex;
ci = ci + blockIdx.y*nxxyy;
sEz[si] = Ez[ci];
sEy[si] = Ey[ci];
if (threadIdx.x<16)
{

sEz[blockDim.x+threadIdx.x] = Ez[ci+blockDim.x];
sEy[blockDim.x+threadIdx.x] = Ey[ci+blockDim.x];

}
__syncthreads();
Hx[ci] = Chxh[ci]*Hx[ci]+Chxey[ci]*(Ey[ci+nxxyy]-Ey[ci])+Chxez[ci]*(Ez[ci+nx]-sEz[si]);
Hy[ci] = Chyh[ci]*Hy[ci]+Chyez[ci]*(sEz[si+1]-sEz[si])+Chyex[ci]*( Ex[ci+nxxyy]-Ex[ci]);
Hz[ci] = Chzh[ci]*Hz[ci]+Chzex[ci]*(Ex[ci+nx]-ex)+Chzey[ci]*(sEy[si+1]-sEy[si]);

}
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Code using xy-mapping
 Code using the xy-mapping.

__global__ void
update_magnetic_fields_on_kernel(int nxx, int nyy, int nx, int ny, int nz, …)
{

...
ey = Ey[ci];
ex = Ex[ci];
for (int k=0;k<nz;k++)
{

cizp = ci + nxxyy;
exzp = Ex[cizp];
eyzp = Ey[cizp];
sEz[si] = Ez[ci];
if (threadIdx.x<16)
{

sEz[blockDim.x+threadIdx.x] = Ez[ci+blockDim.x];
}
__syncthreads();
Hx[ci] = Chxh[ci]*Hx[ci]+ Chxey[ci]*(eyzp-ey)+ Chxez[ci]*(Ez[ci+nxx]-sEz[si]);
Hy[ci] = Chyh[ci]*Hy[ci]+ Chyez[ci]*(sEz[sip1]-sEz[si])+Chyex[ci]*(exzp-ex);
sEy[si] = ey;
if (threadIdx.x<16)
{

sEy[blockDim.x+threadIdx.x] = Ey[ci+blockDim.x];
}
__syncthreads();
Hz[ci] = Chzh[ci] * Hz[ci]+ Chzex[ci] * (Ex[ci+nxx]-ex)+ Chzey[ci] * (sEy[sip1]-sEy[si]);
ci = cizp;
ey = eyzp;
ex = exzp;

}
}
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FDTD CUDA Performance
 Algorithm speed versus problem size

610number of time steps Nx Ny Nznumber of millioncells per second
total simulation time

  
 

 xy mapping
 450 million cells/second

 xyz mapping
 400 million cells/second

 Tesla Computing Card
 Single precision
 Cubic problem domain
 PEC boundaries
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An Example
 Microstrip-Fed Circularly Polarized Square-Ring Patch Antenna [1].

 A highly resonant structure
 Problem size: 228x228x43 = 2,235,312 cells

 CPML boundaries

[1] Hua-Ming Chen, Yang-Kai Wang, Yi-Fang Lin, Che-Yen Lin, and Shan-Cheng Pan,"Microstrip-Fed Circularly
Polarized Square-Ring Patch Antenna for GPS Applications," IEEE TRANSACTIONS ON ANTENNAS AND
PROPAGATION, VOL. 57, NO. 4, APRIL 2009.
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An Example - Transients at 50,000 time steps

 SP starts to deviate from DP at
very large time steps
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An Example – Simulation Time

22.84gpu

cpu

DP
DP



23.17gpu

cpu

SP
SP

 1.94gpu

gpu

SP
DP



1.91cpu

cpu

SP
DP



platform simualtion time (min)* NMCPS

single precision cpu 105.66 17.63

single precision gpu 4.56 408.50

double precision cpu 201.67 9.24

double precision gpu 8.83 210.96

* simulation time for 50,000 timesteps

 Tesla floating point peak
performance (GFLOPs/s)

 Single Precision 933
 Double Precision 78

 Arithmetic operations are
hidden by the  more dominant
memory operations

 cpu: Intel Xeon @ 2 GHz
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Conclusions

 FDTD is a very suitable algorithm to program on a GPU
platform

 CUDA is an easy to learn and efficient architecture to
program compatible GPU cards

 20 times faster computation is achieved on a Tesla GPU
card compared with a conventional CPU using CUDA

 Computational speed can be improved even further on
multi-GPU platforms
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Thank You



Single Precision vs Double Precision in CUDA
 GPU’s with compute capability 1.3 or higher can support double precision

 Tesla floating point peak performance (GFLOPs/s)
 Single Precision 933
 Double Precision 78

An Example
 Microstrip-Fed Circularly Polarized Square-Ring Patch Antenna [1].

 A highly resonant structure
 Problem size: 228x228x43 = 2,235,312 cells

 CPML boundaries

[1] Hua-Ming Chen, Yang-Kai Wang, Yi-Fang Lin, Che-Yen Lin, and Shan-Cheng Pan,"Microstrip-Fed Circularly Polarized
Square-Ring Patch Antenna for GPS Applications," IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL.
57, NO. 4, APRIL 2009.
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An Example - Transients at 50,000 time steps

SP starts to deviate from DP at very large
time steps (time > 14 ns).
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An Example - Transients at 400,000 time steps
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Single Precision vs Double Precision in CUDA

 Single precision is sufficient for most applications

 Double precision is not necessary unless high level of
accuracy is required

 Efficiency of double precision vs single precision on GPU
is comparable to that on CPU
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