
Scientific Computing on Graphics
Processor Units:

An Application in Time-Domain
Electromagnetic Simulations

Veysel Demir, Ph.D.
vdemir@niu.edu

Department of Electrical Engineering, Northern Illinois University, DeKalb, IL 60115

2010 IEEE AP-S URSI, Toronto, Ontario, Canada

Outline

 The Finite-Difference Time-Domain (FDTD) Method

 Compute Unified Device Architecture (CUDA)

 FDTD Using CUDA

Bachelor of Science, Electrical and Electronics Engineering, Middle East Technical
University, Ankara, Turkey, 1997.

System Analyst and Programmer, Pamukbank, Software Development Department,
Istanbul, Turkey, July 1997 – August 2000.

Master of Science, Electrical Engineering, Syracuse University, Syracuse, NY, 2002.

Doctor of Philosophy, Electrical Engineering, Syracuse University, Syracuse, NY, 2004.

Research Assistant, Sonnet Software, Inc. Liverpool, NY, August 2000 – July 2004.

Visiting research scholar, University of Mississippi, Electrical Engineering Department,
University, MS, July 2004 – Present.

Assistant Professor, Department of Electrical Engineering, Northern Illinois
University, DeKalb,IL, August 2007 – present

Veysel Demir

4/60

Integral equation
methodsDifferential equation methods

Computational Electromagnetics

 Maxwell’s equations can be given in differential or integral form

Finite-difference
time-domain

(FDTD)

Finite-difference
frequency-domain

(FDFD)

Method of Moments
(MoM)

Fast multipole
method (FMM)

Finite element
method (FEM)

Transmission line
matrix (TLM)

Frequency domain methods

Time-domain methods

Computational Electromagnetics

 Maxwell’s equations can be given in time domain or frequency domain

Finite-difference
time-domain

(FDTD)

Finite-difference
frequency-domain

(FDFD)

Method of Moments
(MoM)

Fast multipole
method (FMM)

Finite element
method (FEM)

Transmission line
matrix (TLM)

Commercial software packages

 Commercial software packages

Finite-difference time-domain (FDTD)

Method of Moments (MoM)Finite element method (FEM)

Transmission line matrix (TLM)

CST Microstripes

HFSS

ADS Momentum

The Finite-Difference Time-Domain Method

FDTD Books

Yearly FDTD Publications

 The most popular method in computational electromagnetics

Source: Allen Taflove, “A Perspective on the 40-Year History of FDTD Computational Electrodynamics,”
Applied Computational Electromagnetics Society (ACES) Conference, Miami, Florida, March 15, 2006.
Can be found at http://www.ece.northwestern.edu/ecefaculty/Allen1.html

Maxwell’s Equations

 The basic set of equations describing the electromagnetic world

Constitutive relations

0
vD

B
BE
t
DH J
t

 

  


  




  


Gauss’s law

Gauss’s law for magnetism

Ampere’s law

Faraday’s law

andD E B H  

11/60

FDTD Overview – Finite Differences

 Represent the derivatives in Maxwell’s curl equations by finite differences
 We use the second-order accurate central difference formula

() () ()()
2

df x f x x f x xf x
dx x

    


12/60

FDTD Overview – Cells

 A three-dimensional problem space is composed of cells

13/60

FDTD Overview – The Yee Cell

 The FDTD (Finite Difference Time Domain) algorithm was first established
by Yee as a three dimensional solution of Maxwell's curl equations.

K. Yee, IEEE Transactions on Antennas and Propagation, May 1966.

14/60

FDTD Overview – Material grid

 A three-dimensional problem space is composed of cells

15/60

FDTD Overview – Updating Equations

 Three scalar equations can be obtained from one vector curl equation.

E H
t

   


yx z
x

y x z
y

y xz
z

HE H
t y z
E H H
t z x

H HE
t x y







 
 

  
  
 

  
 
 

  

H E
t

   


yx z
x

y xz
y

yxz
z

EH E
t z y
H EE
t x z

EEH
t y x







 
 

  
 

 
  


 

  

16/60

FDTD Overview – Updating Equations

 Represent derivatives by finite-differences

yx z
x

HE H
t y z


 

 
  

1

0.5 0.50.5 0.5

(, ,) (, ,)(, ,)

(, ,) (, , 1)(, ,) (, 1,)

n n
x x

x

n nn n
y yz z

E i j k E i j ki j k
t

H i j k H i j kH i j k H i j k
y z




  





  


 

17/60

FDTD Overview – Updating Equations

 Represent derivatives by finite-differences

yx z
x

EH E
t z y


 
 

  

0.5 0.5

0.5

(, ,) (, ,)(, ,)

(, , 1) (, ,) (, 1,) (, ,)

n n
x x

x

n n n n
y y z z

H i j k H i j ki j k
t

E i j k E i j k E i j k E i j k
z y


 







   


 

18/60

FDTD Overview – Updating Equations

 Express the future components in terms of the past components

0.5 0.5

1
0.5 0.5

(, ,) (, 1,)

(, ,) (, ,)
(, ,) (, ,) (, , 1)

n n
z z

n n
x x n n

x y y

H i j k H i j k
ytE i j k E i j k

i j k H i j k H i j k
z



 



 

  
    
  
 

 

0.5

0.5 0.5

(, , 1) (, ,)

(, ,) (, ,)
(, ,) (, 1,) (, ,)

n n
y y

n n
x x n n

x z z

E i j k E i j k
t zH i j k H i j k
i j k E i j k E i j k

y




 

  
    
  
 

 

FDTD Overview – Leap-frog Algorithm

2010 IEEE AP-S URSI, Toronto, Ontario, Canada

FDTD Overview – Updating Coefficients

 FDTD code in FORTRAN

 Number of coefficients will be less if nonconductive medium is assumed

     
      
      

1 1
2 2, , , ,

, , 1 , ,

, 1, , ,

, ,

, ,

, ,

n n

x x

n n
y y

n n
z z

hxh

hxey

hxez

H i j k H i j k

E i

C i j k

C j k E i j k

E i j k E i j

i j k

C i j k k

 


  

  

subroutine update_magnetic_fields
! nx, ny, nz: number of cells in x, y, z directions
Hx = Chxh * Hx &

+ Chxey * (Ey(:,:,2:nz+1) - Ey(:,:,1:nz)) &
+ Chxez * (Ez(:,2:ny+1,:) - Ez(:,1:ny,:));

Hy = Chyh * Hy &
+ Chyez * (Ez(2:nx+1,:,:) - Ez(1:nx,:,:)) &
+ Chyex * (Ex(:,:,2:nz+1) - Ex(:,:,1:nz));

Hz = Chzh * Hz &
+ Chzex * (Ex(:,2:ny+1,:) - Ex(:,1:ny,:)) &
+ Chzey * (Ey(2:nx+1,:,:) - Ey(1:nx,:,:));

end subroutine update_magnetic_fields

ymx z
x x x

EH EH
t z y

 
 

  
  

Absorbing Boundary Conditions

 The three-dimensional problem space is truncated by absorbing
boundaries

 Most popular absorbing boundary is Perfectly Matched layers (PML)

Active and Passive Lumped Elements

 Active and passive lumped elements can be modeled in FDTD

EH E J
t

 
   



Voltage source Current source

Active and Passive Lumped Elements

Resistor Capacitor Inductor Diode

Active and Passive Lumped Elements

A diode circuit

Transformation from Time-Domain to Frequency-Domain

 Results can be obtained for frequency domain using Fourier Transform

A low-pass filter

S11

S21

26

Near-Field to Far-field Transformations

An inverted-F antenna

27/60

Modeling fine geometries

 It is possible to model fine structures using appropriate formulations

A wire loop antenna

28/60

Incident plane wave

29/60

Scattering Problems

   inc scat inc scatH H E E
t

    
 0inc incH E

t
  


A dielectric sphere

30/60

Scattering from a Dielectric Sphere

31/60

Earth / Ionosphere Models in Geophysics

 Snapshots of FDTD-Computed Global Propagation of ELF
Electromagnetic Pulse Generated by Vertical Lightning Strike off South
America Coast

Source: Allen Taflove, “A Perspective on the 40-Year History of FDTD Computational Electrodynamics,”
Applied Computational Electromagnetics Society (ACES) Conference, Miami, Florida, March 15, 2006.
Can be found at http://www.ece.northwestern.edu/ecefaculty/Allen1.html

32/60

Wireless Personal Communications Devices

Source: Allen Taflove, “A Perspective on the 40-Year History of FDTD Computational Electrodynamics,”
Applied Computational Electromagnetics Society (ACES) Conference, Miami, Florida, March 15, 2006.
Can be found at http://www.ece.northwestern.edu/ecefaculty/Allen1.html

33/60

Phantom Head Validation at 1.8 GHz

Source: Allen Taflove, “A Perspective on the 40-Year History of FDTD Computational Electrodynamics,”
Applied Computational Electromagnetics Society (ACES) Conference, Miami, Florida, March 15, 2006.
Can be found at http://www.ece.northwestern.edu/ecefaculty/Allen1.html

Ultrawideband Microwave Detection of Early-Stage Breast Cancer

Source: Allen Taflove, “A Perspective on the 40-Year History of FDTD Computational Electrodynamics,”
Applied Computational Electromagnetics Society (ACES) Conference, Miami, Florida, March 15, 2006.
Can be found at http://www.ece.northwestern.edu/ecefaculty/Allen1.html

Focusing Plasmonic Lens

Source: Allen Taflove, “A Perspective on the 40-Year History of FDTD Computational Electrodynamics,”
Applied Computational Electromagnetics Society (ACES) Conference, Miami, Florida, March 15, 2006.
Can be found at http://www.ece.northwestern.edu/ecefaculty/Allen1.html

Image from: http://www.nvidia.com/object/GPU_Computing.html

NVIDIA® Tesla™ C10 Series
GeForce GTX 285 (240 cores)
Processor clock =1.4 GHz
Bandwidth = 159 GB/s
Memory = 2 GB (GDDR3)

Intel® Quad Core
Processor ~ 3 GHz

Copyright © 2010 Demir and Elsherbeni

NVIDIA® Tesla™ C20 Series (Fermi)
GeForce GTX 480 (480 cores)
Processor clock =1.4 GHz
Bandwidth = 177.4 GB/s
Memory = 1.5 GB (GDDR5)

Graphics Processing Unit (GPU) Computing

 GPU computing is the use of a GPU (graphics processing unit) to do
general purpose scientific and engineering computing.

RRVS, November 28, 2010

CPU vs GPU

The GPU Devotes More Transistors to Data Processing

CPU vs GPU

http://www.nvidia.com
Floating-Point Operations per Second

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 39/60

Programming FDTD for GPU Platform

 OpenGL
 S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, “Graphics Processor Unit (GPU) Acceleration of

Finite-Difference Time-Domain (FDTD) Algorithm,” Proc. 2004 International Symposium on Circuits and
Systems, vol. 5, pp. V-265–V-268, May 2004.

 S. E. Krakiwsky, L. E. Turner, and M. M. Okoniewski, “Acceleration of Finite-Difference Time-Domain
(FDTD) Using Graphics Processor Units (GPU),” 2004 IEEE MTT-S International Microwave Symposium
Digest, vol. 2, pp. 1033–1036, Jun. 2004.

 S. Adams, J. Payne, and R. Boppana, “Finite Difference Time Domain (FDTD) Simulations Using
Graphics Processors,” Proceedings of the 2007 DoD High Performance Computing Modernization
Program Users Group (HPCMP) Conference, pp. 334–338, 2007.

 High Level Shader Language (HLSL)
 N. Takada, N. Masuda, T. Tanaka, Y. Abe, and T. Ito, “A GPU Implementation of the 2-D Finite-Difference

Time-Domain Code Using High Level Shader Language,” Applied Computational Electromagnetics
Society Journal, vol. 23, no. 4, pp. 309–316, 2008.

 Brook
 M. J. Inman, A. Z. Elsherbeni, and C. E. Smith “GPU Programming for FDTD Calculations,” The Applied

Computational Electromagnetics Society (ACES) Conference, Honolulu, Hawaii, 2005.
 M. J. Inman and A. Z. Elsherbeni, “Programming Video Cards for Computational Electromagnetics

Applications,” IEEE Antennas and Propagation Magazine, vol. 47, no. 6, pp. 71–78, December 2005.

 Compute Unified Device Architecture (CUDA)

 OpenCL

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 40/60

Compute Unified Device Architecture (CUDA)

 NVIDIA® CUDA™ is a general purpose parallel computing
architecture

Advantages
 Standard C language for parallel application development on the

GPU
 Standard numerical libraries for FFT and BLAS (Basic Linear

Algebra Subroutines)
 Scattered reads – code can read from arbitrary addresses in memory.
 Shared memory – CUDA exposes a fast shared memory region

(16KB in size) that can be shared amongst threads. This can be used
as a user-managed cache, enabling higher bandwidth than is possible
using texture lookups

 Faster downloads and readbacks to and from the GPU
 Full support for integer and bitwise operations, including integer

texture lookups.
 Steep learning curve

Source: http://en.wikipedia.org/wiki/CUDA

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 41/60

Compute Unified Device Architecture (CUDA)

Disadvantages
 Texture rendering is not supported.
 For double precision there are some deviations from the IEEE 754

standard
 In single precision, denormals and signalling NaNs are not supported;

only two IEEE rounding modes are supported and the precision of
division/square root is slightly lower than single precision.

 The bus bandwidth and latency between the CPU and the GPU may be a
bottleneck.

 Threads should be running in groups of at least 32 for best performance,
with total number of threads numbering in the thousands.

 Unlike OpenCL, CUDA-enabled GPUs are only available from NVIDIA

Source: http://en.wikipedia.org/wiki/CUDA

RRVS, November 28, 2010 42/60

Grid of thread blocks

RRVS, November 28, 2010 43/60

Memory hierarchy

RRVS, November 28, 2010 44/60

Heterogeneous programming

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 45/60

FDTD using CUDA

Performance Optimization Strategies in CUDA

 Structure the algorithm in a way that exposes as much data parallelism as
possible.

 Ensure global memory accesses are coalesced whenever possible.

 Minimize the use of global memory.

 Use shared memory to avoid redundant transfers from global memory.

 Maintain a high level of occupancy.

 Use a multiple of 32 threads for the number of threads per block as this
provides optimal computing efficiency and facilitates coalescing.

CUDABest Practices Guide, http://www.nvidia.com/object/cuda_develop.html.

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 46/60

Achieving Parallelism (xyz-mapping)

 Mapping of threads to cells of an FDTD domain using the xyz-mapping.
 Each thread is mapped to a cell

block_dim_x = number_of_threads;
block_dim_y = 1;
n_blocks_y = nz;
n_blocks_x = (nx*ny)/number_of_threads +

(nx*ny)%number_of_threads==0?0:1);

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 47/60

Achieving Parallelism (xy-mapping with for loop)

 Mapping of threads to cells of an FDTD domain using the xy-mapping.
 Each thread is mapped to a cell in an xy plane cut
 Then the thread processes all of the cells in the same column in a for loop

block_dim_x = number_of_threads;
block_dim_y = 1;
n_blocks_y = 1;
n_blocks_x = (nx*ny)/number_of_threads +

(nx*ny)%number_of_threads==0?0:1);

RRVS, November 28, 2010 48/60

Coalesced Global Memory Access

 Global memory should be viewed in terms of aligned segments of 16 and
32 words

threads

memory

threads

memory

RRVS, November 28, 2010 49/60

Uncoalesced Global Memory Access

threads

memory

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 50/60

Coalesced Global Memory Acces

 Unfortunately in FDTD updates the operations are dominated by memory
accesses rather than arithmetic instruction.

 The memory access inefficiency is the bottle neck for the efficiency of
FDTD on GPU.

 Global memory bandwidth is used most efficiently when the simultaneous
memory accesses by threads can be coalesced.

 The FDTD domain is
extended by padded cells
such that the number of cells
in x and y directions is an
integer multiple of 16.

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 51/60

Use of shared memory

 Because it is on-chip, the access to shared memory is much faster than
the local and global memory.

 Shared memory is especially useful when threads need to access to
unaligned data.

subroutine update_magnetic_fields
...
Hy = Chyh * Hy &

+ Chyez * (Ez(2:nx+1,:,:) - Ez(1:nx,:,:)) &
+ Chyex * (Ex(:,:,2:nz+1) - Ex(:,:,1:nz));

...
end subroutine update_magnetic_fields

 , ,yH i j k
 1, ,zE i j k

 , , 1xE i j k  coalesced access

uncoalesced access (use shared memory)

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 52/60

Data reuse

 Data transfers from and to the global memory should be avoided as much
as possible.

 If some data is already transferred from the global memory and it is
available, it is better to use it as many times as possible.

 Therefore, a kernel function can be constructed based on the xy-mapping
in which each thread traverses in the z direction in a for loop by
incrementing k index of the cells.

subroutine update_magnetic_fields
...
Hy = Chyh * Hy &

+ Chyez * (Ez(2:nx+1,:,:) - Ez(1:nx,:,:)) &
+ Chyex * (Ex(:,:,2:nz+1) - Ex(:,:,1:nz));

...
end subroutine update_magnetic_fields

 , ,yH i j k
 , ,xE i j k

 , , 1xE i j k  Already in the memory
(use during the next iteration)

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 53/60

Optimization of number of threads

 CUDA Visual Profiler is used to determine optimum number of threads

For this test, an FDTD domain with size of 8 million cells is used.

Cpu time versus number of threads per block.

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 54/60

Code using xyz-mapping
 Code using the xyz-mapping

__global__ void
update_magnetic_fields_on_kernel(int nx, int ny, int nz, float *Ex, float *Ey, float *Ez, ...)
{

extern __shared__ float sEyz[];
float *sEy = (float*) sEyz;
float *sEz = (float*) &sEy[blockDim.x+16];
// ci: cell index
// si: index in shared memory array
int ci = blockIdx.x * blockDim.x + threadIdx.x;
int j = ci/nx;
int i = ci-j*nx;
int si = threadIdx.x; int sip1 = si+1; int nxxyy = nx*ny;
int cizp; int ciyp; float ex;
ci = ci + blockIdx.y*nxxyy;
sEz[si] = Ez[ci];
sEy[si] = Ey[ci];
if (threadIdx.x<16)
{

sEz[blockDim.x+threadIdx.x] = Ez[ci+blockDim.x];
sEy[blockDim.x+threadIdx.x] = Ey[ci+blockDim.x];

}
__syncthreads();
Hx[ci] = Chxh[ci]*Hx[ci]+Chxey[ci]*(Ey[ci+nxxyy]-Ey[ci])+Chxez[ci]*(Ez[ci+nx]-sEz[si]);
Hy[ci] = Chyh[ci]*Hy[ci]+Chyez[ci]*(sEz[si+1]-sEz[si])+Chyex[ci]*(Ex[ci+nxxyy]-Ex[ci]);
Hz[ci] = Chzh[ci]*Hz[ci]+Chzex[ci]*(Ex[ci+nx]-ex)+Chzey[ci]*(sEy[si+1]-sEy[si]);

}

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 55/60

Code using xy-mapping
 Code using the xy-mapping.

__global__ void
update_magnetic_fields_on_kernel(int nxx, int nyy, int nx, int ny, int nz, …)
{

...
ey = Ey[ci];
ex = Ex[ci];
for (int k=0;k<nz;k++)
{

cizp = ci + nxxyy;
exzp = Ex[cizp];
eyzp = Ey[cizp];
sEz[si] = Ez[ci];
if (threadIdx.x<16)
{

sEz[blockDim.x+threadIdx.x] = Ez[ci+blockDim.x];
}
__syncthreads();
Hx[ci] = Chxh[ci]*Hx[ci]+ Chxey[ci]*(eyzp-ey)+ Chxez[ci]*(Ez[ci+nxx]-sEz[si]);
Hy[ci] = Chyh[ci]*Hy[ci]+ Chyez[ci]*(sEz[sip1]-sEz[si])+Chyex[ci]*(exzp-ex);
sEy[si] = ey;
if (threadIdx.x<16)
{

sEy[blockDim.x+threadIdx.x] = Ey[ci+blockDim.x];
}
__syncthreads();
Hz[ci] = Chzh[ci] * Hz[ci]+ Chzex[ci] * (Ex[ci+nxx]-ex)+ Chzey[ci] * (sEy[sip1]-sEy[si]);
ci = cizp;
ey = eyzp;
ex = exzp;

}
}

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 56/60

FDTD CUDA Performance
 Algorithm speed versus problem size

610number of time steps Nx Ny Nznumber of millioncells per second
total simulation time

  
 

 xy mapping
 450 million cells/second

 xyz mapping
 400 million cells/second

 Tesla Computing Card
 Single precision
 Cubic problem domain
 PEC boundaries

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 57/60

An Example
 Microstrip-Fed Circularly Polarized Square-Ring Patch Antenna [1].

 A highly resonant structure
 Problem size: 228x228x43 = 2,235,312 cells

 CPML boundaries

[1] Hua-Ming Chen, Yang-Kai Wang, Yi-Fang Lin, Che-Yen Lin, and Shan-Cheng Pan,"Microstrip-Fed Circularly
Polarized Square-Ring Patch Antenna for GPS Applications," IEEE TRANSACTIONS ON ANTENNAS AND
PROPAGATION, VOL. 57, NO. 4, APRIL 2009.

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 58/60

An Example - Transients at 50,000 time steps

 SP starts to deviate from DP at
very large time steps

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 59/60

An Example – Simulation Time

22.84gpu

cpu

DP
DP



23.17gpu

cpu

SP
SP

 1.94gpu

gpu

SP
DP



1.91cpu

cpu

SP
DP



platform simualtion time (min)* NMCPS

single precision cpu 105.66 17.63

single precision gpu 4.56 408.50

double precision cpu 201.67 9.24

double precision gpu 8.83 210.96

* simulation time for 50,000 timesteps

 Tesla floating point peak
performance (GFLOPs/s)

 Single Precision 933
 Double Precision 78

 Arithmetic operations are
hidden by the more dominant
memory operations

 cpu: Intel Xeon @ 2 GHz

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 60/60

Conclusions

 FDTD is a very suitable algorithm to program on a GPU
platform

 CUDA is an easy to learn and efficient architecture to
program compatible GPU cards

 20 times faster computation is achieved on a Tesla GPU
card compared with a conventional CPU using CUDA

 Computational speed can be improved even further on
multi-GPU platforms

2010 IEEE AP-S URSI, Toronto, Ontario, Canada 61/26

Thank You

Single Precision vs Double Precision in CUDA
 GPU’s with compute capability 1.3 or higher can support double precision

 Tesla floating point peak performance (GFLOPs/s)
 Single Precision 933
 Double Precision 78

An Example
 Microstrip-Fed Circularly Polarized Square-Ring Patch Antenna [1].

 A highly resonant structure
 Problem size: 228x228x43 = 2,235,312 cells

 CPML boundaries

[1] Hua-Ming Chen, Yang-Kai Wang, Yi-Fang Lin, Che-Yen Lin, and Shan-Cheng Pan,"Microstrip-Fed Circularly Polarized
Square-Ring Patch Antenna for GPS Applications," IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL.
57, NO. 4, APRIL 2009.

Copyright © 2010 Demir and Elsherbeni 62

An Example - Transients at 50,000 time steps

SP starts to deviate from DP at very large
time steps (time > 14 ns).

Copyright © 2010 Demir and Elsherbeni 63

An Example - Transients at 400,000 time steps

Copyright © 2010 Demir and Elsherbeni 64

Single Precision vs Double Precision in CUDA

 Single precision is sufficient for most applications

 Double precision is not necessary unless high level of
accuracy is required

 Efficiency of double precision vs single precision on GPU
is comparable to that on CPU

Copyright © 2010 Demir and Elsherbeni 65

