NML High Energy Beam
Absorbers and Dump

29-August-2011
Beams-doc-3928




NML Beam Absorbers
Outline

e System Overview



System Overview

e Dump concept, configuration and radiation design by Church
and Rakhno

e Dump houses 2 water-cooled absorbers
e Each absorber contains two independent cooling loops
e Each circuit accepts 30gpm flow rate

e Single RAW skid can feed multiple cooling circuits
simultaneously
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Key Requirements

e Beam Parameters
0 1.5 GeV, 3.33 nC/bunch, 3MHz, 1ms pulse @ 5Hz
0 3.12 E14 electrons/s
0 75kW beam
e Absorber shall be capable of accepting beam continuously
(i.e. steady state operation)
e Absorber shall have a design lifetime of 20 years, assuming a
70% operation factor (i.e. 123,000 hours)
e Absorber cores shall not require servicing
e Absorbers shall provide a redundant cooling circuit



Absorber Core Configuration

0.5m

0.5m



Absorber Location

|
- ﬁ =7




NML Beam Absorbers
Outline

e Absorber
e Design and Analysis



Absorber Core Configuration

Water cooling in
integral channels

Graphite




Graphite/Aluminum
Contact Architecture

Primary Circuit Outlet

= === Redundant Circuit Outlet

Fastener-preloaded contact:
top and bottom

graphite

No contact on sides

Primary Circuit Inlet

_____ Redundant Circuit Inlet
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Thermal Analysis Approach

e Step 1: Process MARS results in Excel
O Tabulate X, Y, Z and heat generation for each MARS element
e Step 2: Generate mechanical FEA models in NX/Ansys
O Two meshes are used:
e System Model: assess global effects
e Axial Section Model: assess localized heating in graphite
O Tabulate FEA mesh nodal and element XYZ locations
e Step 3: Interpolate MARS results onto FEA mesh in Matlab
0 Use MARS radiation damage estimates to assign material properties
O Map heat generation results from MARS mesh onto arbitrary FEA mesh
O Calculate heat generation at each FEA element
O Generate Ansys text input using BFE/HGEN
e Step 4: Run Ansys to recover temperatures
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MARS Model: (I. Rakhno)
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MARS Results

Heat Generation (W/m?3): linear color scale
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Max: 1.32E8 W/m3 @ Z=.35m
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MARS Results

Heat Generation (W/m?3): log color scale

10"
C Cu/Steel

L.

Max: 1.32E8 W/m3 @ Z=.35m
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Steady State Analyses

e The steady state thermal analyses neglect the pulsed nature of the energy
deposition, and assume constant and continuous beam power
e We use two sets of graphite properties:
e Beginning of Life (BOL) — graphite properties not degraded by radiation
damage (but still fully temperature dependant)
e End of Life (EOL) — graphite damage categorized in bins, corresponding
degraded material properties mapped onto the FEA mesh
e \We further use two sets of beam conditions
e Centered beam — the original, intuitive design concept
e Off-center beam — implemented to distribute graphite damage and
prevent catastrophic failure
e In general, the worst cases are off-center beams at EOL
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System Model Steady State

Centered Beam @BOL
Maximum temperature in graphite and system

qmmgiu-m-ﬂimuu.é-h_

NEE.

[ | |
T8 e e e , e = T

47.258 Min

Max Temperature in Graphite
643°C @ Z=.482m

16



Graphite Thermal Conductivity Reduction

Radiation Effects:

Example data
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Fig. 5. Normalized thermal conductivity of pile Grade A graphite [17].
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MARS Results (I. Rakhno)

DPA/year for a stationary beam: log color scale
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DPAife
Swept Beam

Cumulative Damage
20years, 70% uptime, full beam power

Distributed beam
Maximum damage = 0.22 dpa

Stationary beam:
Max damage = 2.8 dpa

Maroon area exceeds 0.25 dpa
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Radiation Effects:
Modeled k Reduction Factor

Conductivity Reduction Factor

s Indamaged graphite
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Mapping of k Reduction
at EOL on Graphite Core

Migrating Beam
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System Model Steady State

Centered Beam @EOL
Maximum temperature in graphite and system

Temp-Al :
Type: Temperature
Uit °C

Masimum Qver Time
61512010 10:32 AM

1703.2 Max
1519.2

47.153 Min

Max Temperature in Graphite = 1703°C
(compare to 643°C @BOL)
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Absorber Mechanical Design

e Based on the results and recommendations of the thermal

analysis, a detailed mechanical design was completed
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Absorber Mechanical Design




Absorber Mechanical Design

e Key design features
e Contact pressure on graphite is maintained by large-
deflection Belleville washers
e Cooling channels are machined into aluminum plates
e Transition from aluminum cooling plates to stainless piping
is done using roll bonded transition pieces
e Galvanic corrosion managed by redundant seal features,

minimizing free area of stainless
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Component-Level Assembly and Test

e Much effort was put into meticulously assembling, sealing, and

testing the individual cooling plates
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Component-Level Assembly and Test
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Assembly and Test

e Cooling plates were then assembled and interconnected via

1.5”-Schedule 40 stainless interconnect lines
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Assembly and Test

e Completed plumbing
circuits were then
hydrostatically and
pneumatically tested
to ensure a leak-tight
system




Assembly and Test

e |[n the final step of
absorber assembly,
a helium-filled
enclosure will be
constructed around
the absorber cores.
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Dump Shielding Design

e The dump shielding was specified by the Church/Rakhno
radiation design

e The shielding around the absorbers is 24’ X 20’ X 24’

e ~570 tons concrete
e ~620 tons steel

e Designed following established best-practices
e seams, gaps carefully managed
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Dump Installation Sequence
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Dump Shielding Installation

e The vast majority of the steel was obtained from the railhead

e Steel was measured, labeled, and cut to a common length
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Dump Shielding Installation




Dump Shielding Installation

e The first phase of dump
installation has been
completed

e Second phase awaiting
absorber completion




Dump Shielding Installation
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e Summary and Status
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Status

e The assembly of the individual absorbers is nearly complete

e After the helium enclosures are welded and tested, we will
install the absorbers in the dump

e Task completion this fall
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