
1
11093009
DCV

The BackDoor System

Duane C. Voy

Introduction

BackDoor is a protocol and associated software system for exchanging data between

computers. The name BackDoor suggests an alternate portal through which 'friends' gain

access. BackDoor provides quick access to a front-end’s data structures without having to

attach them to ACNet and write custom console application programs. The BackDoor

system is not intended to replace ACNet functionality, it merely provides easy to use tools

to support the front-end development process.

BackDoor is a point-to-point protocol that can support peer-peer or client-server operation,

and can be implemented with any reasonable programming language on any IP based

operating system. The current implementation supports client-server operation only. To

date there is a single BackDoor server implementation written in C++ running on

VxWorks. There is also a client written in C++ running on VxWorks, and another written

in LabVIEW’s G programming language that will run on any platform supported by

LabVIEW. This document describes client-server operation only.

Numerous examples are available to illustrate use of the BackDoor system including:

• an example project called 'backdoorexample' that demonstrates how to get the

default BackDoor server operational,

• several useful BackDoor accessors in the BackDoorServer library and

• a test project called 'backdoortest' that demonstrates how to implement and use

BackDoor accessors and events.

This draft of the documentation covers the second generation of the BackDoor software

system. This latest version represents a complete rewrite of the C++ server and significant

changes to the LabVIEW client with the goal of enhancing cross-platform operation.

Additionally, a C++ client has been added to the system.

2
11093009
DCV

BackDoor (Client-Server) System

BackDoor operation typically involves a server in a front-end node and a client on a

workstation. BackDoor defines a session based symmetrical1 request-reply transaction

protocol. The client establishes a session with its target server, conducts one or more

transactions and ultimately ends the session. Each transaction’s request message elicits a

reply message that may or may not contain data but always contains the status response to

the original request. Sessions may contain a mixture of one-shot and repetitive

transactions. One-shot transactions involve a single request with a single immediate reply

while repetitive transactions involve a single request with multiple replies. Typical

transactions involve reading or setting a remote object, but it is also possible to accomplish

a form of ‘remote method call’ by doing a set-read transaction where the request contains

an object setting value and the reply contains the resultant object reading value.

BackDoor makes no real distinction between data and parameters. Server side data

structures are made available to the server, and thus the clients, via BackDoor::Accessor

(accessor) objects. Accessors have five methods that allow clients to observe and/or

modify the associated structure. Looking from the client's perspective the five methods

are:

• Set - send a value to the setting of the object,

• ReadSetting - read the current value of the object's setting,

• Read - read the current value of the object's reading,

• ReadFifo - read the object in FIFO fashion, and

• SetRead - send a value to the setting of the object and then read the resulting

value of the object’s reading.

Objects with reading and setting capabilities are familiar to users of ACNET which

supports numerous data properties; however, BackDoor supports setting and reading only.

As the ReadSetting method implies the setting and reading may be associated with the same

or different structures within the front-end. The SetRead method is unique in that it

supports a simple remote procedure call mechanism -- set the object and return the result.

Associated with each of the five methods is an Index value provided by the client and

passed through the system to the targeted accessor method. The exact meaning of the index

1 The symmetrical nature of the BackDoor protocol message structure means
that expansion to full peer-peer operation is fully supported.

3
11093009
DCV

is defined by the individual accessor classes. An example use for the index value would be

to identify a unique channel within an object.

In a BackDoor system time related events such as hardware triggers or changes of software

state are made available to server objects as BackDoorEvent (event) objects. For

example, the passage of time is indicated by a special periodic event called 'BackDoorTick'

that occurs at a user specified rate. The server object uses events to trigger responses to

periodic requests. Events can also be used by accessors to trigger data collection.

BackDoor represents aggregates of accessor objects with BackDoorList (list) objects.

List objects are created by the client, forwarded to the server for processing, and persist

within the server until the client deletes them. A list is an ordered list of

accessor/method/index triplets specifying a sequence of accessor method invocations to be

done each time the list is processed by the server. Lists may include any number of

accessor/method/index triplets, in any order, with each identifying any of the five available

accessor methods. Lists can be configured to return data periodically or only when

explicitly read by the client.

Clients may also access individual accessors or lists with one-shot requests. To access

accessors periodically clients must establish periodic list objects. Repetitive list data are

returned on any specified multiple of any event known to the server.

BackDoorServer Class

The BackDoor server uses standard IP networking technology to provide remote clients

with access to the data and parameters of an embedded system. The server is intended to

be lightweight in every respect including:

• small memory profile,

• prompt and quick processing of client requests (not a CPU hog),

• easy to implement (minimal user programming),

• operate entirely at user determined priorities and

• requires no hardware timing resources.2

2At instantiation the BackDoor server creates a default 15 Hz. "tick event task"
that supports periodic activity in the BackDoor server. This task as well as all
other BackDoor related tasks run at a user specified task priority. The default
tick event can be replaced with a user provided event if desired.

4
11093009
DCV

In short the server works only with resources defined by the user, while consuming a

minimal amount of memory and CPU cycles.

The server class has two friend classes: BackDoorEvent which provides synchronization

with user timing, and BackDoorAccessor which provides access to user data structures. A

system that uses BackDoor will have one or more server instances each having zero or

more event instances and zero or more accessor instances. The server itself has no

knowledge of the user's application, the user must create an event instance for each event

and an accessor instance for each data structure to be made known to clients. Events may

be periodic or sporadic and the data associated with an accessor may be of any size and

complexity. Each event and accessor is assigned a numerical identifier by the server, called

an Ident, that provides a shorthand way of addressing the object. Events and accessors

will be described in more detail below.

Upon instantiation the server will create a default periodic 'tick' event called

'BackDoorTick' and a default time stamp accessor called 'BackDoorTime'. The default

tick rate is 15 Hz and the default time stamp is the familiar 64 bit UN*X time containing

seconds and nanoseconds. If desired the default periodic event and time stamp accessors

may be replaced with user provided versions in order to meet unique front-end

requirements. Overriding the default tick and time stamp will be discussed in more detail

below.

In addition to the default tick and time stamp objects the BackDoor server provides several

built-in objects that provide utility services in the system. The names for these objects

include:

• DataIdent - provides Ident lookup services for accessors,

• DataName - provides Name lookup services for accessors,

• EventIdent - provides Ident lookup services for events,

• EventName - provides Name lookup services for events,

• TickRate - provides the frequency in ticks per second of the BackDoor server's

periodic tick event,

• TimeOfDay - UN*X format consisting of two 32 bit words with the first

containing seconds since the beginning of the epoch and the second containing the number

of nanoseconds within those seconds,

• Memory - provides direct read/write access to system memory,

• SymbolTable - provides access to the front-end system symbol table and

5
11093009
DCV

• various BackDoor server diagnostic accessors.

See $RFIINST_INC_DIR/backdoorserver.h for the declaration of the BackDoorServer

class and its methods.

BackDoorEvent Class

Events provide a sense of time to the BackDoor server. Each event instance must have a

unique name and is automatically attached to the most recently instantiated server when the

event itself is instantiated. Events are created by the user and at the appropriate time are

'announced' by the user.

The class EventWorkRequest is used in conjunction with the

BackDoorEvent::AddWorkRequest() method to instruct an event to perform a

specified action whenever the event is announced. The defined work request types include:

• ProcessList,

• AccessorAnnounceEvent and

• AccessorAcquire.

The ProcessList request is used by the server and is not intended for use in front-end code.

When the server is asked to process a list at some multiple of a specified event it uses the

ProcessList EventWorkRequest to tell the specified event to send a list processing request

to the event handler task each time that the event is announced. By using a task to handle

list related events the potentially lengthy process of assembling lists of data is transferred

from (potentially) interrupt level to task level.

The AccessorAnnounceEvent request is used by accessors to instruct an event to call the

accessor's AnnounceEvent() method whenever the event is announced. Through this

facility accessors can perform (hopefully quick) operations upon events. For example

buffered accessors can use this mechanism to swap buffers upon some event.

The AccessorAcquire request is used by accessors to instruct an event to call the accessor's

Acquire() method whenever the event is announced. The Acquire() method should be

quick, simply copying a data point for the accessor.

6
11093009
DCV

Events can be announced at interrupt or task context. You must understand that any of the

work request types described above may result from calling an event’s announce() method,

and that the total number of event work requests in a system is potentially unbounded.

Further, any of the event work requests can potentially execute floating point operations so

announce event calls at interrupt context must be surrounded by a floating point context

save and restore.

To aid in understanding the impact of event work requests on the front-end there are several

diagnostic objects built-in to the server's code:

• TickTimeLine provides a time line display of event processing activity for the

BackDoorServer periodic tick event,

• ServerTimeLine provides a time line display of request message processing

activity within the server,

• TickPeriod provides a histogram of the period of the periodic tick event,

• AnnounceEventExecutionTime provides a histogram of the execution time

for all events announced in the system,

• EventTaskExecutionTime provides a histogram of the execution time of the

event handler task,

• ReplyTaskExecutionTime provides a histogram of the execution time of the

reply (network write) handler task and

• EventFIFO provides an accounting of the events that have been announced in

the system.

Each of the diagnostic objects has an associated LabVIEW demo program for viewing the

data.

See $RFIINST_INC_DIR/backdoorserver.h for the declaration of the BackDoorEvent

class and its methods.

BackDoorAccessor Class

Accessors support remote observation and manipulation of user data and parameter

structures. Each accessor instance must have a unique name and is automatically attached to

the most recently instantiated server when the accessor itself is instantiated.

7
11093009
DCV

The BackDoorAccessor class declared in backdoorserver.h is abstract to support run-time

polymorphism. This means that you cannot directly instantiate a BackDoorAccessor. All

user accessors must be derived from the BackDoorAccessor class.

There are several standard accessors available to users. Standard accessor header files,

located in $RFIINST_INC_DIR, with comment blocks providing some useful

documentation. The standard accessors include:

• InSituAccessor - insituaccessor.h (template),

• InSituReadAccessor - insituaccessor.h (template),

• InSituSetAccessor - insituaccessor.h (template),

• BufferAccessor - bufferaccessor.h (template),

• TwoDArrayAccessor- twodarrayaccessor.h (template),

• OneDArrayAccessor - onedarrayaccessor.h (template),

• TwoDimension- twodimension.h (template),

• OneDimension - onedimension.h (template),

• Histogram - histogram.h (template),

• SHistogram - shistogram.h (template),

• FIFOAccessor - fifoaccessor.h (template),

• PeriodHist - periodhist.h, and

• TimeLine - timeline.h.

• SystemReboot - systemreboot.h.

InSituAccessor provides for reading and setting data as they are located in memory. That is

to say the InSituAccessor class does asynchronous reading and setting of data in situ. The

class is implemented as a template and can handle any data type.

InSituReadAccessor provides for reading data as they are located in memory. That is to

say the InSituReadAccessor class does asynchronous reading of data in situ. The class is

implemented as a template and can handle any data type.

InSituSetAccessor provides for setting and reading the setting of data as they are located in

memory. That is to say the InSituSetAccessor class does asynchronous setting/reading of

data in situ. The class is implemented as a template and can handle any data type.

BufferAccessor provides for reading data through a double buffering scheme. The

BufferAccessor has an Acquire() method that can be called by the user or by an event

8
11093009
DCV

occurrence. The Acquire() method places a copy of the data associated with the accessor

instance into a double buffer for later readout. The class is implemented as a template and

can handle any data type.

TwoDArrayAccessor provides for accessing a LabVIEW dynamic length two dimensional

array in situ. The class is implemented as a template and can handle any data type.

OneDArrayAccessor provides for accessing a LabVIEW dynamic length one dimensional

array in situ. The class is implemented as a template and can handle any data type.

TwoDimension provides for accessing a fixed size two dimensional array in situ. The class

converts a C array to a LabVIEW array, is implemented as a template and can handle any

data type.

OneDimension provides for accessing a fixed size one dimensional array in situ. The class

converts a C array to a LabVIEW array, is implemented as a template and can handle any

data type.

Histogram provides for histogramming a quantity. The class is implemented as a template

and can handle any fundamental C data type.

SHistogram provides for processing simple integer histograms of ADC data. The class is

implemented as a template and can handle any integral data type.

FIFOAccessor provides for collecting data at rates higher than the periodic tick event by

FIFO buffering the data for later readout.

PeriodHist provides for histogramming the execution time of code or the period of

repetitive events.

TimeLine provides a logic analyzer like display of an arbitrary time line. This is intended to

simulate the use of hardware "SSM LEDs" in displaying the performance of a thread of

execution.

SystemReboot simply calls the VxWorks reboot() function whenever any 4 byte value is

sent to the Set() method..

9
11093009
DCV

Each of the standard accessor types has a LabVIEW demo program that exercises the

example. See $RFIINST_INC_DIR/backdoorserver.h for the declaration of the

BackDoorAccessor class and its methods.

Overriding the Default Tick Event and Time Stamp

The default periodic tick event provided by the server is announced at 15 Hz by a task that

loops announcing the tick event and then waiting for 1/15th of a second. The timing

provided by this method is not precise but is adequate for most repetitive list activity. If

this "sloppy" 15 Hz does not match front-end requirements you may instantiate a new tick

event that will supersede the default. The example below shows how the user can create a

periodic tick event. The periodic tick event is unique from all other events in that its

constructor contains a tick frequency (in Hz) parameter in place of an instance name:

const int kTickRate = 15; // BackDoor periodic tick rate

ptr = new BackDoorEvent(kTickRate, diagnosticControl);

ptr->Announce()

The default time stamp provided by the server follows the well-known UN*X format of

two 32 bit words with the first containing seconds since the beginning of the epoch and the

second containing the number of nanoseconds beyond those seconds. If this form of time

stamp does not match front-end requirements you may instantiate a new time stamp

accessor that will supersede the default. The example below shows how the user can create

a time stamp accessor. The time stamp accessor is unique from all other accessors in that its

constructor does not contain an instance name:

new TimeStampAccessor(diagnosticControl);

The BackdoorExample Project

The files in the backdoorexample project (/home/rfies/esd/examples/backdoorexample/*)

demonstrate how to get a BackDoor server running and customize it with a user provided

tick event and time stamp accessor:

• Makefile - shows how to link your project to the BackDoor and other support

libraries,

• Targets - shows the targets currently supported by BackDoor,

10
11093009
DCV

• backdoorexample.cpp - shows how to get a BackDoor server running in a

system,

• backdoorexamplestartup - shows how to invoke the BackDoor instance and

enable client access from within startup scripts,

• BackDoorExample.vi - shows how to manipulate the BackDoorAccessor

instances used in the example and

The backdoorexample project provides three functions that together create a fully

functioning BackDoor system:

• BackDoorExampleNew - creates an instance of the BackDoor server.

• BackDoorAddPrivileges - allows the specification of access privileges on a

client by client basis.

• BackDoorDisplay - displays BackDoorServer instance information including

server parameters, and lists of BackDoorAccessor and BackDoorEvent instances in the

system.

The example creates an accessor instance named "TestData" that makes a floating point data

value available for read access, and an accessor instance named “E-Max” that makes a

floating point parameter value available for read and set access.

LibBackDoorDefault

A single library containing all required BackDoor support files has been created to simplify

use of the BackDoor server. The library is available in:

${RFIINST_LIB_DIR}/VW_${VXWORKS_VERSION}/${TARGET}/libbackdoorDefault.out.

When loaded this library will create a default instance of the BackDoor server with the

following characteristics:

• server TCP port – 2048

• maximum session count – 5

• server priority – 100

• maximum accessors – 100

• maximum events – 25

• additional work space – 2 MB

• additional stack space – 32 kB

• server name - “BackDoorDefault”

• diagnostic flags - kNoDiagnostic

11
11093009
DCV

The library provides three utility routines that may be called from the shell:

extern "C" int BackDoorAddPrivileges(

eClientAccessType const accessType,

unsigned long int const accessAddress,

unsigned long int const accessMask);

extern "C" int BackDoorDisplay(void);

extern "C" int BackDoorDiagnosticControl(

eDiagnosticType const diagnosticFlags);

End.

