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 Proton Improvement Plan Intensity Goals 

 Ultimate goal: 2.2E17 protons delivered/hr @ 15 HZ by 2016 

 Assuming 90% acceleration eff. -> 1E9/200MHz bunch injected 

 Notching in the Booster ring deposits the removed bunches in the gradient 
magnets. This represents on the order of 30% of Booster losses ( few % of 
beam intensity).  

 Ultimately one needs about 50-60 ns notch in the beam at extraction time for 
the extraction kicker rise time. 

 In the 200 MHz beam structure this would correspond to ~10-12 200 MHz 
bunches every 2.2 us and for 10 turns this would be a total of about 60 to 80 
bunches or about 1-2% of injected beam. 

 Assuming 1E9/bunch this would be 1 to 1.2E11 /pulse but for simplicity lets 
assume 1E11 H- need to be neutralized per pulse. At 15 Hz -> 1.5E12/sec  ->  
100 watts of beam power to be removed. 

 We would like to remove this loss from the ring and safely dispose of the 
notched ions. 

 Techniques developed here are applicable in other projects such as laser 
stripping and laser chopping. 
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 In 2001 Ray Tomlin reported on an experiment where 
he created a 25 ns notch in the H-beam in the H- 750 
keV line utilizing a 200 mJ 5 ns laser pulse. 

 

 

 

 

 

 

 

 

 Figures form PAC 2001 conference paper  
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 In 2005 Xi Yang, et. al. proposed to notch the 
linac beam in the 750 keV line at the Booster 
injection revolution frequency (FN-0767). 

 

Cavity length 78 ns (11.7m) 

1J/pulse 5-200ns 15Hz  

Q-switch 
@ 450 kHz 
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The fraction of electrons that are detached from the moving H- ions is: 

The photon flux (generated by the laser) in the lab frame [photons/cm2/sec] 

The photon flux in the lab frame is transformed into the  
rest frame of moving ion as: 

The interaction (crossing) time is just the ion path length/ ion velocity 

The neutralization factor for an ion crossing on axis   
of the laser beam may be written in terms of lab frame parameters 



 It is desirable to generate the notches at the lowest energy 
possible  
 to minimize the impact of the disposition of the neutralized ions 

(lower energy requires less shielding, if any), 

 Lower ion energies have lower velocities and longer 
interaction times which reduces required laser energy 

 Lower energies typically have larger beam sizes which 
increases the pulse energy due to the increased area of the 
laser beam. 
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 For near head-on collisions,  
 the path length of the ion through the laser can be increased, but the center-of-

mass laser photon energy is increased with increasing beta. 

 For near parallel collisions (laser-ion in same direction),  
 again the path length of the ion through the laser can be increased, but the 

center-of-mass laser photon energy is reduced with increasing beta. 

 Both small angle orientations require more beam line space.   

 Due to space considerations we assume that the laser interaction 
with the H- beam is near normal.   

 Center of mass energy is just gamma* Lab frame photon energy 

 The peak of the neutralization cross section for 400 MeV ions 
corresponds to 1 micron lab frame laser at near normal incidence. 

 The time structure of the H- beam that is neutralized (i.e. the length of 
the notch) is dependent on the laser pulse duration. 
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 For notching the linac beam,  
 the laser pulse length can either be matched to the bunch length 

(at 200 MHz) or 

 the notch length (at 450 kHz).  

 For notching at low energy before the RFQ, the pulse length 
should be approximately the required notch length for a single 
pass interaction.   

 For highly bunched beam, for example at 400 MeV, the bunch 
length occupies only 10% of the RF bucket, i.e.  0.5 ns/5 ns.   

 At the low energy end of the linac (750 keV) before the beam is 
completely bunched, it occupies up to +/-90 degrees of the 200 
MHz bucket which means that the pulse length increases from 
~0.5 ns upward to 2.5 ns (at 200 MHz). 

 Bottom line is that for bunched beam tailoring the pulse length 
to match the bunch length is most efficient.  
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 The ion beam dimension perpendicular to the 
ion beam direction should be minimized.  

 For a given neutralization, the required laser 
pulse energy is inversely proportional to 
transverse ion dimension.  

 For the cases described here it is assumed that 
the laser will be oriented horizontally, so the 
laser must match vertical ion beam dimension 
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24.2 us  (~ 11 Booster turns) 

2.2 us 

67 ms 

~22-25 us 

5 ns (bunch spacing) ~500 ps bunch length 200 MHz bunch spacing 

450 kHz “notch” spacing 

15 Hz macro pulse rep rate 

MACRO 

MINI (11 turns) 

MICRO 

2.2 us 

10-12*5ns = 50 -60 ns 
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 Before the RFQ at 35 keV 

 DC beam 

 Laser pulse length ~ 60 ns 

 After RFQ and before or at the start of Tank 1 
at 750 keV 

 Quasi bunched with beam out to +/-90 degrees 

 Laser pulse length either 2.5 ns or 60 ns 

 At 400 MeV just before MV2 

 Fully bunched with a bunch length of ~500-600 ps 

 Could use either 600 ps or 60 ns laser pulse length 
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Ion 
Beam  
Energy 

Pulse 
Energy 

Laser 
Pulse 
Length 

Laser 
Beam 
Size 

Crossing 
Time  

Cross 
Section 
x10-17 

Fraction 
Neutralized 

35 keV 100 mJ 60 ns 3.1 mm 1.2 ns 3.8 98% 

750 keV 140 mJ 2.5 ns 19.8 mm 1.65 ns 3.8 99% 

750 keV 3000 mJ 60 ns 19.8 mm 1.65 ns 3.8 98% 

400 MeV 120 mJ 0.59 ns 7.8 mm 0.36 ns 4.1 97% 

400 MeV 12000 mJ 60 ns 7.8 mm 0.36 ns 4.1 97% 

 To reduce the required pulse energies,  we can 
increase the crossing (interaction) time by 
utilizing a cavity such that the laser beam 
interacts with the ion beam multiple times 
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 Cavity length  ~ laser pulse 
length 

 Used to increase notch size by 
recirculating shorter laser pulse 

 Requires Q-switch to switch laser 
pulse in/out of cavity 

 Requires gain medium to 
compensate losses due to Q-
switch, windows, etc. 

laser H- 

H- 

 Laser follows ion to interact many 
times (increase ) 

 Cavity length  proportional to 
number of interactions 

 Laser pulse length = notch length 

 Cavity dimensions determined by 
ion velocity and spacing of 
interactions 

 Reduces required laser pulse energy 
by number of interactions 

Recirculation cavity 

Linear cavity (zig-zag) 
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 Assume 100% reflectivity on 
mirrors 

 Assume 200 mJ laser pulse on the 
input of the optical cavity 

 Each curve represents single 
interaction neutralization factor, 
F1. 

N
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• If the laser passes through the H- beam N times, the fractional yield FN 
of  H0 is related to the fractional yield F1 of a single crossing by :  
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For a given mirror reflectivity R, the laser fluence available for 
interaction  at each of the Mth  interactions  is  modified by RM such that   

Assume : 

•  2 mJ laser pulse on the     
input of the optical cavity 

•  600 ps laser pulse length 

•  7.8 mm laser beam diameter 

 

N

N FF )1(1 1

Then for N reflections 
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For near normal crossing cavity length ~ laser diameter*nbr crossing -> ~46 cm 



 If beam line space were available in the LEBT or 
MEBT where ion beam sizes were small, one could 
find potentially workable solutions, but these 
would require recirculation cavities, fast Q-
switches and reasonably large pulse energies. 

 At this point the most straight forward approach is 
to utilize the linear zig-zag cavity at 400 MeV with 
laser pulses to match the 200 MHz bunch structure. 

 The following slides show the location, layout, and 
proposed laser system layout 
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launch box 

optics box 

laser transport 

vacuum chamber 

chute 

Q8 

Mirror boxes 

H0 waste 
dump 

H- to Booster 

Current laser profile monitor insert is 1.14 m 

*MAX 10 bunches/notch *10 notch/inj*1E9/bunch = 1E11/pulse*15 Hz = 1.5E12 particles/sec- 

~ 100 W*  
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MW06 

Laser beam size needs to enclose the smaller  
of the Booster beam dimensions i.e 6*1.3 ~ 7.8mm 

Can the linac vertical beam size at MW06 be reduced? 

Is this optical model of the lattice accurate? Data: March 2011 
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Peak contact dose 15 mrem/hr Max Star density 72.E-9 s/cm2/proton 
22% limit for 1 flushing/yr 
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CW 100 mW 
Narrow line width Seed laser 

Pulse pattern 
generator 

Fiber Amp 

Pre-Amp 
Gain ~ ? 

10GHz  
modulator 

Amplifier 
 Gain ~ ? 

Coupling  Optics 
Zig-zag cavity w/ 
~40 -60 reflections 

Input pulse  to cavity: 
~1 -3 mJ, 0.5ns, burst mode 

100 pJ  (0.5 ns)   
200 MHz 

 10-100 nJ  (0.5ns) 
  200 MHz 

Couple to  
free space 
optics 

1-3 mJ   (0.5 ns) 
 200MHz/450 kHz burst 

  

BOOSTER NOTCHER CONCEPTUAL SYSTEM 

TIMING Card /lock 

Approx 1-1.5 m 
length 

450 kHz bursts 

<P200MHz> 2 to 20W 
<P450kHz> 46 to 460 mW 

Top Hat Converter 

r=5mm 1/e  
Ppeak=3mJ/.78 cm2 in 500 ps 
        = 3.8 mJ/cm2 in 500 ps MAX 



 Seed laser  (CW, ultra stable, narrow line width) 
 Pulse Generator- initially commercial pulse generator 
 Timing module – same design at laser wire 
 Modulator – (c.f. 5 GHz Jenoptic modulator) 
 Fiber pre-amp  ~(20W) 
 Matching to free space 
 Main Amplifier 

 DPSS – Grumman proposal 
 Cryo DPSS  - Snake Creek lasers 

 Transport to tunnel – free space/fiber 
 Top hat conversion 
 Zig-zag interaction cavity (40-60 intractions) 
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40 dB extinction 



 Verify the combination of the CW seed and optical 
modulator will produce desired optical pulses with desired 
extinction  

 Design optical zig-zag cavity and procure slab mirrors and 
mounts and set up prototype 

 Beam line modifications planning 
 Investigate fiber pre-amplifier options (many recent 

advances in high power fiber amplifiers) 
 Investigate main free space amplifiers (potential designs 

from Grumman and Snake Creek Lasers) 
 Investigate impact of radiation on diode pumps 
 Determine transmission method (free space or fiber) 
 Evaluate beam shaping techniques 
 First experimental verification of technique in MUCOOL 
 Plan 400 MeV line modifications (MV2, quad stands, dump) 
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