Third resonance extraction assisted by Radio-Frequency Knock-Out Method
            Alexey Kochemirovskiy

                                                        Supervisor Vladimir Nagaslaev

Technical report
Abstract

In this report I present results of simulations for 3rd integer resonance extraction assisted by RF knock-out. The work was done for Mu2e experiment, which uses resonant extraction from the Debuncher ring.  The Debuncher will have to operate with beam intensity of 3x10^12 particles which is approximately 10^4 times higher than that currently used for antiproton production. The task has some challenges, in particular achieving low beam losses and good spill uniformity in the presence of large space charge.

Introduction
This research was done by a member of the PARTI 2011 summer internship program at Fermilab. The program accepts students from universities of the former Soviet Union majoring in Physics and Engineering. The 10-12 week program consists of an assignment, series of lectures, weekly meetings, and a final report that each intern presents.

The Mu2e experiment, proposed at FNAL is aimed to search for rare neutrinoless decays of a muon to electron in the Coulomb field of the atomic nucleus. This experiment is designed to be sensitive to muon conversion at the level of 6x10^-17, which improves existing experimental limits by 4 orders of magnitude. This requires a strong suppression of the background. A pulsed structure of the proton beam suits this purpose best. The time structure defined by the revolution time in the Debuncher, 1.69ms, is almost ideal for this scheme. A single bunch of 40ns rms width is formed in the Debuncher and resonantly extracted towards the Mu2e production target.

The main requirement for this experiment is spill uniformity - the number of extracted particles during the certain amount of time should remain constant. Thus, we must create a mechanism which would allow us to have fast control over the spill rate.

Another important requirement is low beam losses. With the total beam power of 25kW even small losses result in significant issues with radiation levels.

3rd Integer Resonance
The third-integer resonance can be used to extract particles from a synchrotron. Unlike a single turn extraction using kicker system, in this case the extracted beam lasts many turns and therefore is called the spill. This is done by making particles of the circulating beam unstable in a controlled way. For this, the betatron tune in the extraction plane (in general the horizontal plane is used) has to be close to the resonance condition,

3Qh = integer. Qh is the machine tune. The resonance is excited by sextupole magnets. 
The phase plane of the beam
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Figure 1. The beam can be virtually divided on 2 areas: the stable region and the unstable area, as it showed on the diagram above. All the particles that get to the unstable area eventually will be extracted.

The trajectory of a particle in normalized phase space in the unperturbed machine 

is a circle. The area containing circles of all particles is called the beam emittance. When the sextupole is raised to the nominal strength in an adiabatic way (i.e. during a sufficiently large number of turns), a particle with a certain δQ will remain stable if its emittance in the unperturbed machine was not bigger than the area of the stable triangle calculated for the nominal sextupole strength. Therefore the area of the stable triangle is sometimes referred to as the stable emittance.

[image: image2.png]03 03
Initial beam Beam after 1000 turns
o 4 o
o
12 1]
mm ¥, mm
o 1 o ]
o
o
—oif 1 o ]
202 o1 o1 02 =) o1 0 o1 02





On the diagrams above the phase plane of the simulated beam is presented. The initial beam (the left diagram) has normal coordinate distribution. All the particles have the same betatron tune, slightly different from the resonant tune. Some of the particles (the ones with bigger initial amplitudes) get to the unstable area and after a large number of turns will be extracted. On the diagram on the right the phase plane of the beam after the 1000 of turns is presented.  

The spill rate depends not only on how close the particles’ tune is to the N/3 condition, but also on the magnitude of the sextupole field – the unstable area on the phase plane becomes larger and more particles gets to the stop band. 
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Each curve on the plot represents the different tune distance from the resonance of the particles in the beam. On X-axis is the strength of the sextupole field, on Y-axis is the number of escaped particles after a large number of turns. Black line shows the 5% particles border. Red dots indicate the expected values of sextupole gradient to reject 5% of particles. As it can be seen on the diagram, analytical values and simulated data are in a good match. How the analytical calculations were done is shown below. The curves were obtained in the simulations which will be also described later.

The transverse component of magnetic field of sextupole magnet is
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where S is the sextupole gradient


[image: image5]                                                  

The  x’ change of a particle under the sextupole field can be expressed as
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,where Bρ is magnetic rigidity of the particle and SL is called the sextupole strength. 
To specify the value of SL the following general expression is used:

[image: image7.emf]
Here g is a linear function of the sextupole field integral. In our case we suggest that sextupole field interacts with a particle in a very small region. So, this expression simplifies to the following one: 
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The resonance coupling constant can be derived from the expression 
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where the betatron amplitude a0 corresponds to the distance P1-P0 in Figure 1.
From geometrical considerations,
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where ε95 is the emittance of the beam that covers 95% of particles.

After all, the expression for the kick to extract 5% of the particles was obtained:


[image: image11].

Radio-Frequency Knock-Out (RFKO) method


The extraction process depends on betatron frequency of particles. Therefore, it is affected by the beam tune spread. Tune spread may appear as a result of machine chromaticity or the space charge forces.
 In real machine particles within the beam have slightly different energies. The tune of the particle in general depends on energy through chromaticity.  Thus, usually having the normal energy distribution within the beam, machine chromaticity results in similar tune distribution. 
The Coulomb forces between the charged particles of a high-intensity beam

in an accelerator create a self-field which acts on the particles inside the beam like a distributed lens, defocusing in both transverse planes.  This way the betatron motion of the particle changes and so the tune does.  
Tune distribution is changing during the extraction because of density change. Also, the machine tune parameters can vary randomly due to hardware imperfections. In order to achieve good spill uniformity we need to have fast feedback mechanism that will allow us to react fast on spill rate changes. The standard scheme of feedback uses regulation of magnets, which appears to be not sufficiently fast.
For that reasons RF knock-out method is proposed to be used. The essence of this method is to swing particles at the betatron frequency. For that we use a kicker with transverse electrical field changing with RF frequency, which deflects particles at each turn and excites the oscillations of the beam as a whole. In the picture below the simple model of such device is shown:
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The particle travels through this device, where gets affected by the RF electrical field.  The assumptions are that particle’s coordinate doesn’t change in the kicker – only its momentum does; the field is strictly normal to the trajectory of the particle and doesn’t change during the time the particle flies through the device.  These assumptions are in general valid in accelerator physics, where orbit variations are very small compared to the machine scale. We would estimate the validity of this statement later.

If particle flies through kicker during time Δt, the change in momentum can be expressed as


[image: image13]
For the relativistic particle, 
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Suppose that the electrical field in the kicker is a standard harmonic function
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Then, using simple formulas from electrodynamics
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one can obtain the expression for the momentum change of particle in the kicker
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In the normalized coordinates system
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the result of particle interaction with the RF kicker turns out to be
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Now we can prove that orbit variations within the kicker are very small compared to the machine scale. 

If particle gets trajectory angle change in a kicker ΔΘ, then maximum deflection of the particle in the kicker is 
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Knowing the momentum change of the particle in the kicker Δp and the longitudinal momentum p, we can calculate the angle change as 


[image: image23]
For the given length of the kicker L= 1.4m calculation gives the value of deflection 10^-6 

mm. The typical beam size in our case is about 1 mm.  

We are able control RF device quite fast, so when using output monitor it’s possible to organize fast feed-back system. 

With given power and geometrical parameters of device, it is essential to organize the knock-out process in a way to achieve the maximum beam “heating”. The ideal way would be to warm up the particles with the exact frequency of their betatron oscillations. Unfortunately there are two problems. First, the accuracy at which we know the tune at any particular moment is limited, as it changes during the spill. Second, there is a significant tune spread within the beam and each particle has its own betatron frequency. To meet these difficulties, signal frequency modulation is needed. 

In my simulation 2 kinds of frequency-modulated signals were used: linear sweep modulation and noise modulation. 

Linear modulation
The main idea is to heat up the particles in the beam via frequency modulated signal in a limited range of frequencies that covers the tune spread frequencies within the beam. One of the options is linear modulated signal. On the left diagram the shape of such signal is presented. 
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On the X axis is the number of turns, on the Y-axis is the frequency of the RF signal.

Unfortunately, here we face some problems. If we take a look on the Fourier spectrum of this signal, it has a form of a series of narrow peaks.  

Thus, only fraction of particles with tunes in the area of frequency peaks will be excited by external field, while the particles, whose tunes are between the peaks will not be heat up. To eliminate this problem, artificial shuffle was added to the simulation. A random phase shift is added to the modulation at the end of each sweep.
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Figure 2. Fourier spectra of linear modulation with shuffle. The red curve corresponds to the modulation period of 200 turns, blue curve – 600 turns.

On this diagrams linear frequency modulation kicks spectrum is presented with different values of periods of modulation. As we can see, the spectrum bandwidth depends on the period of modulation. Modulation period should be large compared to inverse frequency width in order to preserve good shape of the distribution. However, there are other constraints on this parameter. In order to ensure fast beam response (below 1 msec), this period should be well below 1msec/revolution period=600 turns.
Colored noise modulation

Another type of frequency modulation we considered here is a white noise signal in the narrow region of frequencies. 
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Figure 3. Fourier spectrum of noise modulation. Range of frequencies normalized by the revolution frequency is 0.02 . This kind of spectrum can be implemented by generating the white noise and filtering it within certain band.
 


One of the tasks is to understand what should be the optimum relation between modulation bandwidth and tune spread. In other words, to determine the strategy for beam heating the relation between these two parameters must be explored.

Simulation
All simulations were carried out in Mathcad software. The simple model was used: once  per turn particles experienced a kick from modeled RF device, then coordinates of particles on the next turn were calculated using propagation matrix. For the simulation this statement means that on the N+1 turn, the coordinates of the chosen particle can be presented the following way: 


[image: image27]
To study the beam behavior it’s essential to simulate the particle’s tune spread within the beam. Tune distribution is characterized by the space charge effects and the chromatic tune spread.  Here we assume the energy in the beam  has a normal distribution. In this simulation only the chromatic tune spread is considered, therefore, the tune spread was chosen to have the normal distribution as well. The machine tune (Q=0.29) was chosen quite arbitrary, though close to 1/3 and outside of other major resonances. 
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Figure 4. This histogram shows the example of tune distribution. On the X-axis the tune is presented. On the Y-axis is the number of particles.

Being affected by the external force of the slowly changing frequency, the beam starts to oscillate as a whole structure. This motion is called dipole oscillations and they grow in time. Due to tune spread within the beam, emittance also grows.
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Figure 5. Dipole oscillations of the beam in the case of noise modulation. On the X-axis is the number of turns, on the Y-axis is the deflection of the center of the beam from the initial position.  
Now we should determine the optimal frequency bandwidth for both linear-modulated and noise-modulated signal. For better understanding of the results we expect , let’s consider 1 particle traveling along the ring. In case of linear frequency modulation, this particle feels a series of kicks of the close frequency, so it starts to deflect from its initial orbit. After 1 period of modulation additional random shift occurs and the process starts over. Again, the particle starts to deflect in some direction over and over. This situation is similar to the Brownian motion scenario – the movement under the sequence of random kicks. So, on the big number of turns, we expect that deflection of the particle will be proportional to the root of time, or in our case, the root of number of turns. The dipole oscillations of the beam as a whole do not necessarily result in the emittance growing. Special conditions should be met to make this happen. It is the chromatic tune spread in a beam that allows transforming dipole oscillations into emittance growth. In other words, due to the tune spread betatron oscillations of particles within the beam become incoherent which results into beam size increase.  For the purposes of extraction we need emittance growing and coherent oscillations of the beam are undesirable.

Thus, we expect that the size of the beam would grow proportional to the root of number of turns as well.  
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where A plays role of the initial emittance, B is the growth rate of beam emittance.


[image: image31]
Figure 6. The emittance growth in case of linear modulation. On the Y-axis is the squared root of the emittance. The red curve represents the simulated data; the blue line is the approximating curve.

To determine the best strategy for the RF knock-out, it’s important to compare two types of modulations. The first step is to fix the modulations’ bandwidth and compare the growth rates of two modulations with different tune spreads within the beam. 
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 Figure 7. Growth rate of the emittance with different tune spreads in a beam. The red dots here represent the linear modulation; blue dots correspond to noise modulation. The width of FM is 0.02. 

[image: image33]
Figure 8. The growth rate of the emittance versus reversed value of tune spread in a beam.

As we can see on the diagram, the growth rate is proportional to the reversed value of tune spread when tune spreads are bigger than the width of modulation spectrum, but in the area where tune spread reaches the spectrum width the growth rate slows down significantly. That gives us a clue that it makes sense to keep bandwidth of modulation comparable with the tune spread. Another important moment is that reducing infinitely the bandwidth of modulation comes to some cost, as it will be discussed below. 
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Figure 9. The growth rate of the emittance versus bandwidth of the modulation. Blue dots – linear modulation. Red dots – noise modulation.

On this diagram the growth rate of the emittance for different bandwidths of modulation is shown. Tune spread was fixed such  that 95% of particles get to the 0.03 diapason. As we can see, the growth rate is increasing with decrease in a bandwidth both for noise and linear modulations.  Again, we can see that growth rate of emittance slows down in the area where bandwidth of modulation becomes smaller than tune spread.

Now we can draw some preliminary conclusions about modulation strategy.

It seems to make sense to heat up the beam in a way that bandwidth of the modulations defines comparable to the tune spread within the beam. Making modulation spectrum significantly wider decreases the heating efficiency (emittance growth rate), while making it too narrow doesn’t deliver much benefits. Now we will call “the best strategy” a situation when the width of RF spectrum approximately equals to tune spread.

The last step is to compare two types of modulations using this strategy. 
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Figure 10. Growth rate of emittance after 10^4 turns versus tune spread in a beam for both modulations using optimal strategy. 

This diagram indicates that two types of modulations show very close performance. For the larger tune spreads within a beam the growth rate is significantly lower than for a narrow distributions. The explanation of that effect is simple. According to optimal strategy we choose a narrower bandwidth of the signal for narrower tune spreads. That means that a particle experiences more coherent kicks than it would in case of wider bandwidth of RF signal.

Figure 8 also shows the values of emittance growth for different tune spreads. The question we should answer to is for what range of tune spreads the power of the kicker is sufficient to cause significant growth of emittance during short period of time.
The requirements of the experiment are that we should be able to regulate the spill rate during 1ms time, or approximately 600 turns. It’s generally agreed that such response speed should grant a stable control over the spill rate. The results of simulation show that power of the kicker W = 800 Watt used in the simulation gives rate of the emittance growth higher than 20% for all considered tune spreads (0.002-0.05).This should be sufficient for the fast control of the spill rate. In reality we’re usually dealing with tune spreads in this range. As an example, simulation shows 80% emittance growth for 0.01 tune spread value.    
Summary
In this work the important part of the RF knock out method analysis is done. The model of beam being influenced by single RF-kicker device was studied. For more efficient heating-up the beam two types of modulated signal were proposed - linear sweep and colored noise modulation. The comparison of these two methods revealed that they show quite a similar performance. For different values of tune spreads within a beam optimal strategy was determined – the bandwidth of RF signal should be approximately equal to the tune spread value.

The results of simulations also show that the kicker’s power of 800Watt is enough to present the fast heating-up of the beam which is required for the fast control over the spill rate. For the wide range of tune spreads the method is capable of increasing emittance in more than 20% during 1ms time period.
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