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Objective 
 Project X can deliver ~1 MW beam 

 Factor ~40 larger than the power expected in -to-e  
 Variable time structure of the beam 

 Almost arbitrary within few s period 
 How to use this power? 

 How should the target look like? 
 What kind of experiments can be done? 
 Which additional possibilities for experiments can the 

large power result in? 
 Achievable muon flux 
 What else can be done to improve experiments with stopped 

muons? 
 Can ionization cooling of muons help? 
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Muon Physics 
 Possible experiments 

 Next generation (g-2) if motivated by next round (theory, LHC)   
 Next generation -to-e  

 new techniques for higher sensitivity and/or other nuclei. 
  edm 
 3e           
 +e- -e+   
 -A  +A’ ; m-A  e+A’ ; m-e-(A)   e-e-(A)  
 Systematic study of radiative muon capture on nuclei.   

Major types of experiments 
 High energy,  small repetition rate (~10-100 Hz, fast extraction from ring) 

 (g-2) 
 Small energy, high repetition rate (~1-10 MHz) 

 decays on a fly 
 Stopped muons: -to-e, 

 Ultimate requirements to a muon source: 
o Small energy, pc < 10-20 MeV (Ekin < 0.5 – 4 MeV) is desirable 
o Large flux ~1013 s-1  
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Two Major Types of Muon Sources 
 Solenoid transport based 

 Has large acceptances - both transverse and longitudinal 
 Limited manipulations with beam phase space 
 Expensive  

 Based on large diameter SC solenoids 

 
 Isochronicity can be achieved in limited range of p/p with helical channel 

 General baseline based (large length to achieve good extinction of -) 
 Still requires decay solenoid to achieve high muon yield 
 Detector solenoid is required by experiment 
 All types of beam phase space manipulation are possible 
 Limited phase space reduces the muon flux 
 Inexpensive  

 Based on dipoles with edge focusing  
o FFAG presents one of possible choices for beam line optics 
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Surface Muon Beam 
 No decay solenoid 
 ~4 orders of magnitude 

smaller muon yield  
(~1.6·10-8 /p_GeV for KEK) 

 ~30 MeV/c central momentum 
 
 
 100 ns/div 
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Particle Production Simulations 
 p + A  + …  + + … 
 There are no solid theoretical  

base for models of multiple  
particle production in  
hadron-nucleon interaction.  

 There are a lot of  
experimental data on 
 charged pion production  

 MARS particle production  
model was tuned to recent  
measurements of HARP  
collaboration  
 p = 2, 3, 8 GeV/c 

 Two HARP groups have  
published different results  
based on same measurements 
 Difference for - is not  

significant 
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Pion Production in a Pencil-like Target  

  
Pion longitudinal distribution function (df/dp||)/Ep_kin [c/GeV2]  
Target - nickel cylinder, L=10 cm, r=0.4 cm; no magnetic field 
Total production per unit energy of incoming protons 

Ekin=2 GeV: forward 5.3% p_GeV-1; backward – 2.9% p_GeV-1
 

Ekin=3 GeV: forward 6.3% p_GeV-1; backward – 2.8% p_GeV-1
 

 Longitudinal pion distribution is close to the Gaussian one, p  100 MeV/c 
 Central part of distribution has weak dependence on the incoming proton 

energy in the range [2-8] GeV 
 High energy tail grows with proton energy 
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Pion Production in a Pencil-like Target (continue) 

 
Pion distribution over momentum, d3N/dp3 ,  
Nickel cylinder, L = 10 cm, r = 0.4 cm; no magnetic field 

 Distribution function approaches zero due to particle deceleration at the 
target surface 



Muon Task Force, Valeri Lebedev 9

Pion Deceleration due to Ionization Loss 

For  0.1, 1    one can write 2
0

1dE dE
dx dx

   
   

For non-relativistic case 2 2 / 2E m c   =>  
4 4 3 2

0

4fin in
dEp p m c L
dx

    
   

Distribution function change is:  
( )( )

/
in

fin
fin in

f pf p
dp dp

  

Combining one obtains:  
 

  3/43 4 4( ) /fin fin fin rf p p p p    
        

 where:  3 24
0

4 / /rp m c L dE dx c  

 
 pr  has comparatively weak 

dependence on medium properties 
 0

/dE dx ~1.6 MeV/(g/cm2)); pr   1 MeV/c for L  1 mm 
 m  m  fluxes of pions and surface muons are not significantly 

different for p ≤ 30 MeV/c !!! 
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Muon distribution over momentum  
 After decay a muon inherits the original pion momentum with p 

correction depending on the angle of outgoing neutrino, pcm=29.8 
MeV/c 

 For most of pions (p > 60 MeV/c) a decay makes  
a muon with smaller p  
 Momentum spread in -beam is smaller than in -beam 
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Phase Density and Emittance of Muon Beam 
 Pions  

 For short target, argtL F ,  (antiproton source)  

  
arg*

6
t

opt

L
    =>  

arg 2

6
tL

   

 For small energy pions this approximation does not work, i.e argtL   
 In this case  

 
2

    where  
2pc
eB

   

 and the beam emittance does not depend on the target length 
 Phase density of pions grows with the magnetic field 

 Muons 
 To reduce emittance growth due to pion decays the pions are transported in a 

solenoidal magnetic field 
 Pions are produced in the solenoid center  

 they have small angular momentum 
 Pion decays have little effect on the angular momentum and the beam emittance 

 Phase density of the muons is proportional to pion density and, consequently, 
 the number of muons in a given phase space grows with magnetic field  
 and muons do not have x-y correlations after exiting the solenoid 
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Target and Target Cooling 
 Optimal target length should be ~1.5 of nuclear interaction length 

 i.e.: carbon ~60 cm; tantalum ~15 cm 
 The beam leaves ~10% of its energy in the target;  
 For 1 MW beam power the power left in the target is ~ 100 kW  
 Large beam power prohibits usage of pencil-like target  

 Heat cannot be removed from pencil target: dP/dS ≥ 2 kW/cm2 for R~0.5cm  
 Mercury stream is another possibility but it has significant problems with 

safety. Therefore it was not considered. 
 Cylindrical rotating target looks as the most promising choice 

 Carbon (graphite) and tantalum targets were considered 
 Tantalum or any other high Z target has a problem with heating 
 

5 m

P
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Target cooling 
 Rotating cylinder is cooled by the black body radiation  

 PSI uses a rotating graphite target at 1 MW beam power 
 Tantalum, R=10 cm, d=0.5 cm, L=15 cm, 400 rev/min 

 T  3000 K (melting T = 3270 K), T  50 C 
 Graphite (C), R=10 cm, d=0.5 cm, L=40 cm, 60 rev/min 

 T  1800 K (melting T = 3270 K), T  50 C 
 For graphite temperature looks OK but we still have to address   

 Bearing lifetime under radiation (rotation) 
 Relative to the pulsed beam the CW beam drastically reduces stress 

in target  
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Effects of radiation 

 
 Transition from 25 kW of -to-e to 1 MW increases the shield radius  

from ~80 cm 110 cm => B = 5 T  3 T for the same stored energy 

Shielding estimate 
       C[t] / W[t] /Rmax [cm] 

C target Ta target 

1 MW 140/80 (110) 180/100 (125) 

300 kW 100/55 (95) 110/65 (100) 

This preliminary absorber 
design satisfies typical 
requirements for SC coils    
 peak DPA 10-5 year-1) 
 power density (3 W/g)  
 absorbed dose 60 kGy/yr 
 Dynamic heat load is 10 W 
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Muon Yield from Cylindrical Target 

 
Yield per 1 GeV of proton energy: pc=3 GeV/ (Ekin=2.2 GeV),  

x = y = 1 mm – parallel beam, proton multiple scattering unaccounted 
 Small difference between forward and backward muons for Pc<50 MeV 
 For pc<120 MeV a weak dependence on Ekin_prot for Ekin_prot [2, 8] GeV/c 
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pc [GeV]  
Tantalum hollow cylinder  
Rout=20 cm, R=5 mm, L=16 cm, =300 mrad 
Total muon yield at ±10 m   

Forward – 1.4% per proton GeV 
Backward – 0.73% per proton GeV 
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df
dp

[GeV-1]

Forward 

Backward 

pc [GeV]  
Carbon hollow cylinder  
Rout=20 cm, R=5 mm, L=40 cm, =200 mrad 
Total muon yield at ±10 m   

Forward – 1.3% per proton GeV 
Backward – 0.59% per proton GeV 
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Muon Yield from Cylindrical Target (continue) 
 For pc < 120 MeV the carbon target has smaller yield but  

 Less problems with cooling due to larger length 
 It also makes less neutrons  

 Compared to a pencil 
like target a hollow 
cylinder target has 
smaller muon yield  
 But it allows one 

to use much 
larger beam 
power 

 Beam damp inside 
solenoid would be a 
formidable problem 
therefore below we assume: 
 Backward muons 
 Carbon target 
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Muon Yield into a Beamline with Finite Acceptance  
 In some applications beam transport in a beam line can be desirable 
 It allows 

 Isochronous transport preventing bunch lengthening   
 but it significantly reduces the acceptance and momentum spread 

 Below we assume that the beam line limits maximum acceptance and 
momentum spread to  0.3-3 cm, p/p  ±0.15 
 Beam line can be matched to decay solenoid to maximize the capture   opt  
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pc [MeV] ß [cm]   
Graphite cylind. target, backward muons, pprot=2 GeV/c, x=y=1 cm, p/p=±0.15, =200 mrad, B=2.5T 
 For small emittancethe dependence of muon yield on the function is weak 
 Strong suppression of small energy muons (pc<50 MeV) by deceleration in medium  
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Muon Yield into a Beamline with Finite Acceptance (continue) 
 Absence of x-y correlations after 

beam exit from magnetic field requires 
axial symmetric exit from solenoid 
 i.e. the beam center has to coincide 
with solenoid axis  

 Yield is proportional to Btarget  
 2.5 T 5 T would double the yield  

 Yield is  p/p (for p/p << 1) 
 Yield is  1.5  

 
 Capturing the beam in a beam 

line reduces the muon flux by about 20 – 50 times 

 
Dependence of muon yield on the target angle 
relative to magnetic field for carbon target into 
the following phase space: x=y=1 cm, 
p/p=±15%, pprot = 3 GeV/c, (Ekin=2.21 GeV) 
Optimal momenta are: 100 MeV/c for backward 
and 200 MeV/c for forward muons 
Triangles show results for tantalum target 
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Muon Yield into limited acceptance and momentum spread 
backward muons, B=2.5 T,  popt = 100 – 120 MeV/c 
 = 3 mm mrad, p/p = ±15%,  
 Graphite Tantalum 
Eproton_kin 
[GeV] 

Total yield Yield per GeV 
of Ekin_proton 

Total yield Yield per GeV 
of Ekin_proton 

1 1.8·10-5 1.8·10-5 4.4·10-5 4.4·10-5 
pc=2 ? ? ? ? 
2.205 9.5·10-5 4.3·10-5 11.7·10-5 5.3·10-5 
pc=7 ? ? ? ? 

 
 Large yield reduction for carbon target at 1 GeV 
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Muon Yield into the -to-e solenoidal transport  
 -to-e acceptance simulation 

 Acceptance is defined to be the number of negative muons, as a fraction of the number of 
negative pions produced in the target, that reach the end of transport solenoid channel 

 Convolution of acceptance with 
muon production yields 

Graphite  
Eproton_kin 
[GeV] 

Total yield Yield per GeV 
of Ekin_proton 

1 ? ? 
pc=2 ? ? 
2.205 2.73·10-3 1.24·10-3 
7.117 7.93·10-3 1.11·10-3 

Tantalum  
Eproton_kin 
[GeV] 

Total yield Yield per GeV 
of Ekin_proton 

1 ? ? 
pc=2 ? ? 
2.205 ? ? 
7.117 ? ? 



Muon Task Force, Valeri Lebedev 21

Making slow muons 

 
Dependence on target thickness;  

10 m decay channel, 2.5 Tesla, Ɛ=3 cm, 300 mrad angle, backward direction.  
 Current model does not take into account scattering of primary 

proton beam in target. 
 It will reduce dependence on the target radius 
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Multiple scattering of protons in the target 
 Multiple scattering limits the thickness of cylindrical target to a few 

millimeters 
 Optimal target thickness is weakly affected by its material 

 Heavy target has larger scattering but is shorter  
 It has approximately the same overall effect on the beam 

envelope growth due to multiple scattering 
 Small proton beam emittance 

in Project X allows some 
reduction of multiple 
scattering effects  
 the beam is focused to the 

small spot at the target 
end  
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Beam transport in Helical Transport Line 
 If isochronicity of beam transport is required then the beam transport in a 

“standard” line is the only choice 
 The line may consist of downward spiral  

 It is matched to the production and detector solenoids with two dipoles and one 
or two solenoids at each end  

 Toy example  
 One revolution includes 4 dipole magnets: B=5 kG (Pc=50 MeV), L=52.3 cm,  

R=33.3 cm, gap 13 cm, good field region width: ±15 cm 
 The line acceptance 0.41 cm; Momentum spread ±0.15, it descends with angle of 

2.591 deg, step of the helix is 23.973 cm   

14.07650
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Beam transport limitations 
 To achieve the yield of ~10-4 we need to have a line with acceptance 

of ~3 cm (backward muons from carbon target) 
 Similarity of optics yields:   a  x,y  Ro  
 Isochronicity requires soft focusing, Qx ~ 1 
 Magnetic fields are reduced with increase of Ro making magnet 

price affordable 
 Total length and number of turns is determined by required pion 

extinction (~70 m for 50 MeV/c and extinction of 10-14) 
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Possibilities with Deceleration and Degrading  
 Deceleration in electro-magnetic structure results in the adiabatic 

antidumping, with consequential 6D emittance growth  p-3, i.e. 8 
times for every factor of 2 in momentum 

 Deceleration in the material looks much better at large p (p ≥ m)  
but behaves the same way ( p-3) for non-relativistic particles  
 even worse than it if multiple scattering is important (large x,y at absorber) 
 Redistribution of damping decrements in realistic simulation partially 

helps but does not address the problem 

 
gL 1 x 2  0.25 x 200 cm x 0.3

y 2  0.25 y 200 cm y 0.2
scat 1

D 150 cm Dp 0.0 M56 0

x 3 cm y 3 cm p 0.15             

eff 0.281

xfin
xin

6.89
y fin
y in

2.54
pfin
p in

1.758

 



Muon Task Force, Valeri Lebedev 26

Deceleration (Degrading) after Ionization Cooling 
 Ionization cooling looks rather hypothetical possibility because:  

 In difference to the muon collider the CW operation is required  
 It makes the cooling much more difficult and presently hardly feasible  

 Cost prohibitive 
 Even if the cooling problem is solved at pc = 100 - 200 MeV the 

deceleration to low energy is quite ineffective 

0 50 100
0

0.5

1f p( )

p [MeV/c]  
0 100 200

0

0.5

1f p( )

p [MeV/c]  
Degrading of the rectangular distribution with ±3% momentum spread 

 The ionization cooling graded with energy looks even more exotic 
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Conclusions 
 1 MW target in a few Tesla solenoidal field is feasible 

 Graphite rotating cylinder cooled by the black-body radiation 
 Loss of efficiency ~20% relative to a pencil like target (@ pc~100 MeV) 
 Radiation shielding: R  80 cm (for -to-e)  R  110 cm 

 Smaller B if the same energy is stored in the field;  
o Magnetic field change: BR-3/2  (80/110)3/2  0.6 
o overall loss of muon yield is smaller than factor of 2 
o ~ 20 times more muons than present Mu2e (1 MW, 1 - 3 GeV) 

 Muon yield per unit power weakly depends on proton energy[2-8 GeV] 
 Only ~15% reduction if the energy is reduced from 2.2 to 1 GeV for Ta 
 but 2.5 times larger for graphite (!!! ???)  

 Beam line option 
 Creates wide possibilities for the phase space manipulations 

 Isochronicity of beam transport 
 Muon flux reduction by more than an order of magnitude 
 Decelerating or degrading of muons does not look promising 
 Ionization cooling of muon is presently hardly feasible 
 Requirement to have only low energy muons for stopping in a thin target 

(pc<<100 MeV) results in drastic reduction of muon flux 
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 First (1 GeV) stage of Project X can match present Mu2e 
schedule (~2019) and will have acceptable cost 
 Increased beam power can make Mu2e less expensive 

or more powerful or both (depending on our will) 
 + additional savings in the future (next stage Mu2e …) 
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Muon Yield into limited acceptance and momentum spread 
B=2.5 T,  = 3 mm mrad, p/p = ±15%,  
 
BACKWARD: 
carbon target:    r=10cm, emittance=3cm,  

optimal momentum  120 MeV/c+-15%,  beta =27-36 cm,  1.8e-5 muon/POT 
         momentum    50 MeV/c+-15%,  beta=12cm           4.5e-6 muon/POT 
 
tantalum target:    r=10cm, emittance=3cm,  

optimal momentum  105 MeV/c+-15%,  beta =33 cm,   4.4e-5 muon/POT 
                   momentum     50 MeV/c+-15%,   beta=12cm           1.5e-5 muon/POT 
 
FORWARD: 
carbon target:    r=10cm, emittance=3cm,  

optimal momentum 180 MeV/c+-15%,   beta =27-36 cm, 4.6e-5 muon/POT 
 

tantalum target:    r=10cm, emittance=3cm,  
optimal momentum 120 MeV/c+-15%,   beta =33 cm,   3.3e-5 muon/POT 
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Present -to-e 
 Conversion – 2.1·10-3 (dNp/dt=2.4·1013 s-1, P=25 kW, dN/dt=5·1010 s-1)  
 Extinction <10-10 (sensitivity 6·10-17(90% C.L.)) 
 Target (gold, L~16 cm, r=0.5 cm, water cooled) 

 Total power - 25 kW 
 Power left in the target – 2 kW 

 Secondary target 
 17 Al discs, 0.2 mm thick, 5 cm apart, tapered radii – rd = 8.3  6.53 cm 

 Magnetic fields 
 Production solenoid: 5T -> 2.5 T, internal radius 0.75 m (reflection of muons) 
 Transport solenoid – 2 T 
 Detector solenoid : 2T -> 1T (reflection of electrons with negative p||) 
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Major Requirements to a New Generation -to-e Experiment†  
 ~100 times better than -to-e 

 single event sensitivity 2·10-19 (or 6·10-19 at 90% CL) 
 5·1018 muons: 2 years of 2·107 s each  
 5·1012 muons/s  

 Pc < 20 MeV i.e. Ekin<1.9 MeV (stopped in 0.4 mm Al foil) 
 Extinction <10-14 for pions; no antiprotons 
 Short pulse: t < 10 ns  
 Detector is located underground (≥12 m)  

 Short pulse and very good extinction imply that the beam transport 
has to be in an isochronous beam line 
 Drastic reduction of transverse and longitudinal acceptances  

 1 MW Project X power should be helpful  
 Limitation of maximum energy to <1 MeV points out to the muon 

deceleration as a possible choice  
 
† Bernstein & Prebys, July 26, 2011 
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Muon distribution over momentum  
 After decay a muon inherits the original pion momentum with p correction 

depending on the angle of outgoing neutrino, pcm=29.8 MeV/c 
 For most of pions (p > 60 MeV/c) a decay makes a muon with smaller p  

 Momentum spread in -beam is smaller than in -beam 
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4D beta-functions (top) and dispersions (bottom) for helix and match to the detector solenoid   


