Report on Beam Instrumentation Workshop (BIW12): April 16-20, 2012 (continued)

Nathan Eddy, Vic Scarpine, and Alex H. Lumpkin

Presented at Department Seminar

May 24, 2012
 - 134 attendees from 22 countries
 - 17 vendors
 - 2 Tutorials, 10 invited, 19 contributed orals, 86 posters
 - Preliminary proceedings are posted on BIW12 website

II. Series will transition to International Beam Instrumentation Conference (IBIC). Merge BIW, DIPAC, Asian workshops.
List of classifications

- Beam Charge and Current Monitors
- Beam Loss Detection
- Beam Position Monitoring
- Data Acquisition Technologies
- Feedbacks and Beam Stability
- Longitudinal Diagnostics and Synchronization
- Other
- Overview and Commissioning of Facilities
- Transverse Profiles, Screens, and Wires
- Transverse and Longitudinal Emittance Measurements
- Tune Monitors and Measurements
FNAL Input to BIW12

- Tutorial by Nathan on DSP and algorithms.
- Invited talk by Vic on proton H beam diagnostics.
- Invited talk by Alex on Beam profiling techniques.
- Contributed talk by Charles Tobin on real time autocorrelation of coherent transition radiation at A0PI. Randy, Amber, Alex, co-authors.
- Contributed talk by B. Walasek-Hohne on first OTR imaging of non-relativistic heavy ions. AHL proposed experiment realized.
- Manfred W. and Jim Z. on organizing program committee.
Real-time Interferometer (RTI)

- RTI provides online spatial autocorrelation of coherent transition radiation with 32 element pyroelectric array.

Diagnostic Layout

Raw autocorrelation
I. Introduction

II. Beam profiling with YAG:Ce scintillation
 - Scintillator resolution
 - Depth-of-focus issue
 - Possible solution to coherent source interference

III. Optical Transition Radiation (OTR)
 - OTR basics
 - OTR point-spread-function (PSF) aspects
 - Microbunching instability and coherent OTR (COTR)
 - Non-intercepting aspect with optical diffraction rad. (ODR)
 - Non-relativistic beams

IV. Future tests

V. Summary
Prototype Imaging Station

- New developed imaging station in collaboration with RadiaBeam, Inc.
• Scintillator screen resolution vs. thickness after applying corrections discussed on page 6.
• OTR can be used for beam
 – profile / size – energy,
 – position – relative intensity
 – divergence – bunch length

• Charged particle passing a media boundary (EM dipole).

OTR angular intensity distribution of a single charged particle
Estimation of OTR/COTR spectral effect for LCLS case.
Reduction of COTR effects with 400x40 nm BPF, but need more sensitive camera than 40dB analog CCD to see remaining OTR.
FLASH: Gated ICCD on COTR

- MCP gate used to reject prompt COTR emissions

Motivation

- Scintillation screen + gated camera

Camera image: FLASH, 13SMATCH section, 9 Jan 2011

- Al coated Si OTR screen, COTR light, Coherent SR

- LuAG screen, COTR & scintillation light

- LuAG screen +100ns delay
 Only scintillation light

Minje Yan | Influence of observation geometry on resolution | 15.2.2011 | Page 6
M. Yan, GSI WS 2011
Proposed OTR Application to Heavy Ions

- Consider applying technologies and concepts for ions.
- Take advantage of charge state for OTR generation.

For a non-relativistic charge Q, traveling with velocity v, the spectral energy density of transition radiation is,

$$W(\omega) = 4Q^2\beta^2/3\pi c,$$

where $\beta = v/c$ and c is the speed of light.

Ginzburg and Tsyovich, (1984)

More than a “gedanken” experiment!
Experimental setup consists of an OTR target ladder (6 targets on one ladder) and image-intensified CCD camera system (ICCD) from PROXITRONIC.

• the exact ICCD gating feature (down to 10 μs) was used to select preferentially the prompt OTR signal versus any background sources in the scene.

*GSI slides provided by B. Walasek-Hohne

For future investigations we reduced beam current!
First results – first pictures

Beam parameters: Uranium, 11.4 MeV/u, $2.6 \cdot 10^8$ ppp in 300 µs

First, there is a signal!

→ transversal light distribution is observed
→ better signal by using stripping foil

From B. Walasek-Hohne
OTR is expected to show linearity to the number of charges crossing without risk of saturation.

OTR signal strength as relative total ICCD intensity for different particle number

Beam parameters: U^{73+}, 11.4 MeV/u, $1 \cdot 10^7 - 3 \cdot 10^8$ ppp in 300 µs

From B. Walasek-Hohne
Summary

• Scintillator resolution terms should be characterized,
 – Use normal incidence of beam as preferred geometry to minimize depth-of-focus issues in beam images.
 – Scintillators may be used more for ultra-bright electron beams.

• OTR polarization effects need to be elucidated
 – Plan to use linear polarizers with OTR imaging for the perpendicular profile components at ASTA.

• Mitigate microbunching instability effects for profiling of bright beams.
 – Plan to use 400x40 nm band pass filters and LYSO:Ce crystals after bunch compression at ASTA to suppress expected diagnostics complications due to COTR.

• New paradigm for heavy-ion beam imaging with OTR.

• The future remains bright for imaging techniques.
CEBAF/JLAB Upgrade Funded

6 GeV CEBAF

12 GeV CEBAF

Two 0.6 GeV linacs

Two 1.1 GeV linacs
• Injector being installed with First beam expected in 2012.
OTP/ODR Studies Proposed

- Path to test near-field imaging on 10-µm size at 23 GeV.
Summary

 • 134 attendees from 22 countries
 • 17 vendors
 • 2 Tutorials, 10 invited, 19 contributed orals, 86 posters
 • Preliminary proceedings are posted on BIW12 website

II. Series will transition to International Beam Instrumentation Conference (IBIC). Merge BIW, DIPAC, Asian workshops.
 • IBIC12 at Tsukuba, Japan: Oct. 1-4, 2012
 • IBIC14 at San Francisco, CA: Sept. 2014?