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Abstract 
The well-known longitudinal coupled-bunch mode theory 

is reviewed and evaluated including finite bunch length effects 
and Landau damping for the parameters of the Fermilab 
Booster. Predictions of mode growth rates are found to be in 
general good agreement with experimental observations, both 
temporally and in frequency space. The inclusion of Landau 
damping in the stability analysis is required to achieve overall 
agreement with the observed unstable mode spectrum. Particle 
simulation using the ESME code are carried out to describe 
observations of large amplitude oscillations and saturation 
effects near the end of the acceleration cycle. Finally, a model 
of the emittance growth, which is valid for growth rates slow 
with respect to mode frequencies, is explored. 

I. INTRODUCTION 

Even after installation of RF cavity mode dampers 
suppressed the long-observed longitudinal coupled-bunch 
instability [l], questions remained as to whether the behavior 
scaled as predicted by the theory. Also, the details of the 
longitudinal emittance growth scaling were unclear. First, we 
describe the comprehensive comparison of Booster data with 
the predictions of the linear coupled-bunch mode theory. 
While there is strong evidence that nonlinear effects are 
important, we wished to study the unstable mode growth data 
quantitatively at least to determine the regime for which the 
linear theory is valid. A rigorous test of and modification of 
some of the assumptions used in the literature is required for 
proper application to the Booster. Solutions are found 
numerically using standard algorithms. It is found that 
including self-consistently the effects of the beam momentum 
spread in the nonlinear RF potential (Landau damping) is 
essential to accurately describe the unstable beam behavior. 

The linear theory is completely inadequate in explaining 
the emittance growth resulting from the instability. Instead, a 
fully nonlinear simulation is invoked using the longitudinal 
particle tracking code ESME developed at Fermilab to study 
the response of the beam in the presence of a high-Q driving 
impedance. Subsequent analyses of the results produce an 
qualitative scaling of the emittance growth and a dcepcned 
understanding of the suhtletics and sensitivites of the 
instability on various parameters. 
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I. MEASUREMENTS 

Three quantities were measured in the Booster for use in 
the comparison with the theory. First, the impedance due to 
the RF cavity higher-order modes (HOM), which drive the 
instability according to the theory, was measured. [2] Because 
the RF cycles in 33 msec from 30 to 53 MHz, many of the 
HOMs also tune, so data were recorded corresponding to 
several times through the cycle, The beam fluctuation spectra 
were obtained by detecting the signal from a wideband resistive 
wall monitor and performing an FFT using a TEK DSA 602. 
An example of a typical spectrum may be seen in [ 11. Before 
suppressing the instability through the recent installation of 
RF cavity mode dampers, strong oscillations were seen in 
coupled-bunch mode (wave) numbers around n=16 and 48 (of a 
possible 84). The spectra were recorded at several times 
through the cycle and the unstable mode amplitudes were 
extracted. We see the measured growth of mode n= 16 plotted 
in Fig. 2. Finally, the full (95%) bunch lengths 5~ were 
measured through the cycle in order to calculate the 
synchrotron frequency spread. 

II. LINEAR THEORY 

We begin with the linearized Vlasov equation in polar 
coordinates (r, @I [3] 
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where we assume the particle distribution function .f, 
normalized to unity, may be separated into a stationary and 
perturbed part given by 

f(r, 8.1) = .fo(r> + .fl(r)e’@ e-ii2r, with I,foj >> j,f,( (2) 

In this analysis, we consider a pure dipole oscillation only, ie. 
m=l, and no mode coupling. In (2). R are the normal modes 
of the instability. This quantity is complex, therefore a 
positive Im(fi)=Ri will lead to growth of the perturbation and 
Re(iZ)=fir gives a frequency shift. The force F in ( 1) is the 
self-induced force on the beam due to its walre fields in the 
beamline environment. This force may be written as the sum 
of products of the Fourier components of rhc charge density 
and the impedance. After substituting F and summing over all 
bunches, we arrive at 
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We eliminate the sum by choosing the dominant Zk only and 

write 

l=i q&Ie u02 16 zk m&e ---- J 21rp2E us2 o,h2L4 k o x-y 

where J, is the Bessel function and Zk the impedance due to 
the RF cavity higher-order modes at the frequencies 
w=~w~+w,+~. The index k=@+n, where h is the 
harmonic number, p the RF harmonic, and n the coupled- 
bunch mode number. Multiplying by r J1 (k’r)/(R - w,(r)) 

and integrating both sides over r leads to the dispersion 
relation 

m ‘Ocr’ Jl(kr)Jl(k’r) 
l=-~~~~J dr ~jnm,~,~~ (4) 

k,k’ 0 

Normally, we are interested in solving (4) for each coupled- 
bunch mode n=O 1 , ,...,h, to find those eigenfrequencies Q 
which are unstable. As this is an infinite dimension matrix 
equation, a number of simplifications are generally made. In 
the literature, the small-argument expansion is substituted for 
one or both JIM) terms. This is the short bunch 
approximation: kr is the ratio of mode amplitude to 
perturbing wake field wavelength. For the Booster, however, 
kr is not small. Also, to allow analytical solutions, w, is 
often assumed constant, so that Landau damping can be 
neglected. We studied both regimes, constant w, and w,(r), 

to examine the influence of Landau damping. 
For a constant w, = w,” , the denominator in (4) may be 

pulled out of the integral. In the Booster, there are two 
unstable modes, each driven by two RF cavity parasitic 
modes. The mode around n=16 is driven by 169 and 220 MHz 
(RF order p=3,4). Mode n=48 is driven by 83 and 345 MHz 
@=1,6). For each n, (4) becomes a 2x2 matrix equation with 

solutions given by II- MUI = 0. For a gaussian particle 

distribution, the matrix elements may be written 

M,, = ;L qloe Uo2 1 zki 
--e 

-f(kj’+k,‘)LZ 
‘J ARso,D”L /i, 

I, (kikjL2) (5) 

where AQ= ( Q-wSO), L = * w,, TV is the bunch half length 

in radians and 11 are modified Bessel functions. The matrix 
elements are evaluated for n=16,4R at different times t through 
the cycle using the measured impedance Z,. In each CXC, the 
karger n(t) of the two solutions is taken to dominate. 

In the case of Landau damping, the frequency spread 
w, (1.) must he included. We use the approximation [3] 

r=hL (6) 

The integral in equation (7) is solved numerically, fixing fi, 
and varying 52,. The curves can be plotted in the complex Z- 
plane as shown in Fig 1. This example corresponds to 
Booster parameters at t=29 msec in the cycle, &=2x(2.2) 
kHz, AaS=21c(78) Hz. The solution for Q(t) is found graph- 
ically by finding the intersection of one of the curves with the 
measured Zk/k. If the impedance falls inside the innermost 
curve, the system is stable. For a Z,/k = (1.4, 2.0) Im as 
plotted with a large dot, the growth rate predicted is 0.3 msec-1 
without Landau dampinE and only 0.1 msec-l with. 
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Fig. 1. Instability curves showing graphical 
solution of growth rate. 

We may use a WKB approximation, since R(t) is a slow 
function of time, to get the integrated growth of the 
instability. The coupled-bunch mode amplitude v(t) is 
calculated using 

(U) 

The result, comparing the measured dipole coupled-hunch 
mode amplitude for n=16 in the Booster with the growth 
predicted by linear instability theory both without and with 
Landau damping, is shown in Fig 2. 
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Fig. 2. Linear coupled-bunch theory vs. Booster data, ~16. 

III. SIMULATION 

We used the longitudinal particle tracking code ESME [4] 
to simulate the Booster using the measured RF cavity I-IOMs 
[2]. A full ring of 84 bunches (46k macro particles) were 
tracked driven in separate runs by 83 and 220 MHz impedances 
modelled as LRC resonators. The results depend strongly on 
the initial particle distribution. We reproduced the observed 
dipole amplitude and emittance growth with a gaussian 
distribution tracked through transition. In each case, the 
bunches begin to oscillate rather coherently until, at different 
radii, they filament in the nonlinear RF potential. The results 
are shown in Fig. 3. The bunches clearly begin to filament at 
a larger amplitude on the left. The unstable behavior depends 
on both the growth rate R, and the frequency shift Q, which, 
for 83 MHz, are a factor of 2 and 100 larger, respectively. The 
unstable impedance parameter space wan explored to determine 
a scaling for predicting the final maximum amplitude. 
Additional details are discussed in [5] and [6]. 

IV. DISCUSSION 

Results from the linear coupled-bunch instabilty theory 
show good quantitative agreement with the measured growth 
despite the large amplitude ocsillations. It is shown that 
Landau damping must be invoked to predict the observed 
saturation. Two additional corrections should be noted. First, 
the expression for the radial dependence of the frequency w, in 
(6) is strictly true only for a stationary bucket, ie. when 
#, = 0. A more general expression gives a moving bucket 

Aw, scaling of (1 + 5 tan2 $,)[7]. This result, using the 

same analysis as that leading to (7). predicts growth rates 
reduced by up to a factor of ten near transition cncrgy, 
where $, = 65”. This seems, however, inconsistent with 

observations. Second, the measured stationary particle 

distributions extracted from the envelope of the RF harmonics 
in the beam spectra may be used instead in the calculations. 
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Fig. 3. Phase space plots from ESME simulation for an 
impedance at 83 MHz (left) and 220 MHz (right) for the last 
4 msec in the Booster cycle. The axis scales are 

AE=t40MeV and A$= ?3”. 
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