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● Introduction: neutrino physics

● T2K
● The T2K experiment and the off-axis near detector 

● ν
µ
 flux and spectrum measurement in the near detector

● Neutral current single pion cross-section

● Other work

● LArIAT 
● Liquid argon TPCs goals and the LArIAT experiment

● Online monitoring / slow control for LArIAT

● Conclusion

Outline
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Neutrino physics
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● Neutrino nature: Majorana or Dirac? → neutrino = anti-neutrino?

● Neutrino oscillations :
● 3 flavor eigenstates ≠ 3 mass eigenstates → PMNS matrix

● Oscillation parameters: 2 Δm²
i j
 (Δm²

i j 
= m²

i
 - m²

j
), 3 mixing angles θ

i j
 and 1 phase. 

● All parameters have been measured except δ, the CP-violation phase.

→ if δ ≠ 0, then CP violation in leptonic sector, hint for leptogenesis

● Mass hierarchy normal or inverted?

● Neutrino masses? 

→ From cosmological limits Σ mν < 0.3 eV 

● Sterile / right handed neutrinos?  

● Relic neutrinos, supernovae neutrinos, geo-neutrinos ...

 Neutrino physics is a rich and exciting field!

Neutrino physics challenges
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● Neutrino oscillation probability (simplified):

 → where L = propagation distance (km), E
ν
 = neutrino energy (GeV).

∝∆m2

∝sin2(2θ23)

ν
μ
 osc. probabilities

before osc.
after osc. 

ν
μ
 energy spectra Ratio osc./unosc.

● Need to reconstruct ν
μ
 energy, measure the ν

μ
 energy spectra before and after 

oscillation, and calibrate the energy scale.
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● Neutrino interact through weak interaction only, either through the exchange of a W± 

boson (charged current) or a Z  boson (neutral current)⁰  with a nucleon or nucleus.

Used for ν
μ
 flux & energy 

spectrum measurement

      Neutrino-nucleus interactions

CC 
Quasi-
Elastic

NEUTRAL CURRENT 

NCπ+

CC1π 
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coherent

CC Deep 
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The Tokai to Kamioka experiment
(T2K)
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● Goals
● ν

μ
 → ν

e 
: Measure or improve limit on θ

1 3 
by at least an 

order of magnitude;

● ν
μ
 disappearance: Precise measurement of ∆m²

3  2
 and 

θ
2  3 

.

● Off-axis ν oscillation long baseline experiment (Japan)
● ν

μ
 beam (~600 MeV) produced at J-PARC (Tokai) by a 

30 GeV proton beam ;
● Near detectors: ND280 at 280m; 
● Off-axis far detector: Super Kamiokande at 295km.

● Data taking started in January 2010.  
● T2K will be delivered 5.102 1 POT (protons on target).

θ = 2.5°

Proton 
Beam

 Target Magnetic
focusing

Decay pipeπ-, K-

π+, K+

π +→µ +ν
µ

0 m                                                   120 m            280 m                                                  295 km

TokaiKamioka

Near Detectors
(INGRID + off-axis ND280 )

Tokai to Kamioka (T2K)
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● Located at 280m from the proton target, off-axis 

angle of 2.5°. 

● Goals: 

● characterize neutrino beam before oscillation 

→ flux, ν energy spectra, beam composition 

and direction, ν interaction cross-section 

measurements.

● Uses UA1 magnet: 0.188 T magnetic field.

● Different detector types:

● P0D (π0 detector) ;

● Tracker: 3 Time Projection Chambers (TPCs)

+ 2 Fine Grained Detectors (FGDs) ;

● ECAL (Electromagnetic calorimeter) ;

● SMRD (Side Muon Range Detector) embedded 

in the magnet yoke.

Magnet Yoke 
+ SMRD

Magnet 
coil

P0D ECAL Barrel ECAL

P0D
TPCs FGDs

DS
 ECAL

ν µ

Off-axis near detector (ND280)

1 2 3

1 2
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ν
µ
 flux measurement in 

the off-axis near detector tracker
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Fine grained detectors (FGDs)
● Provide target mass for neutrino interactions  

 (~1 ton per FGD).
● Measure neutrino cross sections in carbon 

and water (oxygen).
● Track and vertex reconstruction. 

● FGD design:
● Thin scintillator bars organized in X-Y 

layers

● Additional passive water panels in FGD2

1.86 m

1.86 m

36.5 cm

 Time projection chambers (TPCs)
● Reconstruct charged particle's tracks

● Particle identification (dE/dX resolution < 10%)

→ distinguish µ / e and protons / π.

● Momentum measurement (resolution < 10% 

@1 GeV) → measure track curvature.

● TPC design :

● Gaseous detector instrumented with bulk 

MICROMEGAS on the readout plane.

Near detector tracker

2.
5 

m

1.0 m

B = 0.2 T

2.5 m

- 25 kV

E

E

MM
module



05/06/14 F. Blaszczyk - APT seminar 12

● Motivation: ∆m²
32

 and θ
23 

 measurement require both the oscillated and the unoscillated 

νµ flux and energy spectrum.

● Goal: first measure of the νµ energy spectrum at the near detector for future oscillation 

analyses and validation of the 1st T2K oscillation analyses.

Motivations and goal

● What are we looking for ? 
● ν

μ
 flux and spectrum can be measured using 

an inclusive charged current sample. 

→ simple and robust, good for 1st data sample

→ charged current events tagged with the 

outgoing muon track.
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● The flux prediction will be compared to the 

measured flux per energy bin.

● Simulation is divided into 2 main steps:
● Hadroproduction (GCALOR or FLUKA2008).

→ tuned with SHINE data (CERN hadroproduction 

experiment).
● Beam propagation (JNUBEAM, GEANT3).

● Uncertainty up to 15% for E
ν
 < 1 GeV and up to 30% 

for E
ν
 > 1 GeV.

→ limited by hadroproduction understanding ( π + 

K multiplicity and production cross-sections). 

Flux prediction
ν

μ
 flux prediction at ND280

Uncertainty on flux prediction
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● Data set: Full 1s t T2K data set (2010, 

January - June runs)

  → 2.91x1019 POT (protons on target) . 

Currently T2K has been delivered ~ 1021 

POT! 

● Monte Carlo sample:

Neutrino interaction generator NEUT, full 

off-axis detector with magnet geometry 

simulated by GEANT 4.

● Normalization: POT
MC

 / POT
Data 

= 33.7

Muon like

Proton like

         TPC1         FGD1       TPC2      FGD2      TPC3  

Y

X

Z (beam)

CCQE candidate event observed 
in the near detector tracker

Data / MC samples
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● All tracks must cross at least ¼ of the TPC (18 pts) and be within 10 cm radius of the 
muon track starting point 
● Muon candidate cuts:

● Negative track with highest momentum
● Must start in either FGD1 or FGD2 (fiducial volume ~ 78% of the total volume)  
● PID cuts: Compatible with µ  hypothesis at < 2.5 σ and incompatible with e hypothesis 

at > 2 σ 
● Proton-like track must be consistent with the proton hypothesis (momentum and dE/dx cuts).

Event selection
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Selected sample

● Good agreement between normalized MC and data after selection.

● µ purity of the sample: 84% 

● Charged current purity (CCQE): 84.35% (42.71%)

● Charged current in fiducial volume efficiency: 46.04%
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● CCQE hypothesis to reconstruct ν
μ
 energy, spectrum 

binned in 9 energy bins up to 5 GeV.

● Minimize -log likelihood (Poisson distribution probability)

● Expected number of events for a measured energy bin

→ Energy resolution
 
→ Backgrounds: NC, out-of-FV, anti ν

μ
, ν

e
 and anti ν

e
.  

Flux fit method (1)

flux dependent fixed
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● Expected number of events for a true energy bin

● Interaction types k
proc

: CCQE, CCRES (all CC - CCQE - CCDIS), CCDIS, and NC (background)

Flux fit method (2)

Flux factors we fit
(expected to be close to 1)

Predicted fluxes Φ(e
t r u e

)

(from slide 13)

Number of each atom type N 

(C, H, O) in the fid. vol.

Cross-sections σ on C, H, O 

per interaction type

Global efficiencies ε 

nb of selected evts / generated evts 
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● Represents the probability to reconstruct E
meas

 knowing E
t r u e

, and depends on the 

interaction type and to a lesser extent of the topology. 

● CCQE resolution matrix is mainly diagonal, CCRES/CCDIS/NC matrices have important 

off-diagonal contributions → strong correlation between energy bins → large errors in 

the fit. 

● E
t r u e

 > 10 GeV contribute to E
mea s

 < 5 GeV → correction applied for E
t r u e

 > 10 GeV.

Fit example for CCRES category
9t h true energy bin, 2 track topo 

combined

Energy resolution
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● Prior to fitting data, the procedure was validated with Monte Carlo using 
2 different approaches. 

● Good agreeement between expected spectrum after fit and measured 
spectrum. 

Data fit results

Correlation
with low bin
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 Several sources of systematic uncertainties were studied:

● Cross-section related uncertainties (see next slide)

● Out-of-fiducial volume contamination

→  cannot be predicted by calculation but can study how the 

variation of the fraction of out-of-fv events changes the flux factors.

● Final state interactions (theoretical models)

→ comparison between GENIE and NEUT, which have different 

approaches on FSI.

● Other sources of error:

● Number of atoms in the fiducial volume

● Contributions from true energies higher than 5 GeV

● PID related errors

       Systematics 
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● Cross-section related systematics computed by applying ± 1 σ variations on each process 
cross-section independently.

● Fit the flux factors and compute difference with the non-modified results.

Int. Category < 2 GeV > 2 GeV

CCQE 25%

CCRES 46% 30%

CCDIS 30% 25%

NC 36%

      Systematics: Cross-sections

Correlation with low 
populated 

neighboring bin ≈ uncertainty on 
cross-sections

→ Our flux measurement is limited by the uncertainties on cross-sections.
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● Data fit results with fit errors and detailed systematic errors 

● Our measurement is limited by the knowledge on neutrino interaction cross-sections.

● Improvements possible: more statistics (both data and MC) and fit measured energies up 

to 10 GeV

Flux fit summary



05/06/14 F. Blaszczyk - APT seminar 24

Flux fit conclusions

● First measurement of the ν
µ
 energy spectrum successful!

● The initial flux prediction and the fitted flux are in good agreement within the errors.

→ flux prediction is validated as well as the oscillation analyses! 
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Neutral current single π+

cross-section measurement in 
the P0D

(feasibility study)
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● Purpose:
● Provide target mass for neutrino interactions   

(~13-16 tons).
● Measure neutrino cross sections in carbon and 

water (oxygen), in particular the ones with π0 in 

the final state.
● Track and vertex reconstruction. 

● P0D design:
● Thin triangular scintillator bars organized in X-

Y layers alternating with brass or lead sheets

● Cental volume: water bags between each 

scintillator + brass sheet group

● Fibers read with multi-pixel photon counters 

(MPPC)

Near π0 detector (P0D)
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Goals and motivation

● Measuring the NC1π+ xsec with the P0D

→ single measurement done by Gargamelle

→ in T2K, tracker analysis (C. Liccardi thesis)

● Can shed some light on final state interactions

● Signal: Single positive track (consistent with a π+)

→ no charged leptons, no other mesons, N baryons (because of 
final state interactions). 

● Expected main background: muons (μ+ from anti-ν CCQE and from 
μ- CCQE ).

 
This is a Monte Carlo-simulation-only analysis
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Truth: generated in P0D FV

π+

N

µ+

N

?

µ−

N

µ−

N,K,π.. .

N,K,π.. .

NCπ+-like Other NC-like

CCQE-like Other CC-like

ν-CCQE-like No final state

NEUT channel

Total 581 872 100 %

NCπ+ 9 059 1.6 %

CCQE 219 681 37.8 %

CCπ+ 100 953 17.3 %

CC-other 89 548 15.4 %

Anti-ν CCQE 5 557 0.9 %

NCE 94 048 16.2 %

NC-other 63 026 10.8 %

Final state

NCπ+ like 8 312 1.4 %

CCQE-like 250 107 43 %

Other CC-like 146 928 25.2 %

ACCQE-like 6 424 1.1 %

Other NC-like 163 353 28.1 %

No final state 6 748 1.2 %

A
ft

er
 F

S
I

B
ef

o
r e

 F
S

I
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Expectations from truth

 

● π+ from NCπ+ have:
→ more scattering (nuclear interactions) → 
more kinks (broken tracks?) 
→ lower momentum 

● Rejection of:
- anti-ν CCQE: apply cut on momentum 

→ requires momentum reconstruction

- CCQE / CC in general: 
→ μ- identification: good charge (negative or  
positive track) reconstruction

→vertex activity cut (for CCQE in particular,
when the proton is not reconstructed) 

- Other NC, NCE in particular: 
→proton identification: use PID defined in 
neutral current elastic analysis (D. Ruterbories).
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Event selection

1) 1 reconstructed track > 15 cm, starting in P0D fiducial volume
2) “Kinked” track proximity cut < 10 cm
3) Tracks must be contained and Kalman filter fitted
4) Longest track must be positive
5) Initial charge  < 120 peu (sum of 1st 2 hit clusters of the most upstream track)
6) Proton/muon PID cut at the end of most upstream track  < 20

2 short tracks 2 uncorrelated 
tracks

2 tracks close at
“end”

2 tracks close at
“vertex”

REJECTED

1 single long track

2 tracks matched

2 tracks matched

SELECTED
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Event rates per topology

(1 short, 1 long = 2350) (1 short, 1 long = 45, 2 long 232)

All events
Total 269 403 100 %

2 short 106 478 39.5 %

Single long 135 186 50.2 %

2 tracks 27 739 10.3 %

Uncorrelated 11 453 4.3 %

Close at vtx 14 954 5.5 %

Close at end 251 0.1 %

Matched 1 081 0.4 %

NCπ+ like
Total 2 291 100 %

2 short 599 26.1 %

Single long 1 459 63.7 %

2 tracks 233 10.2 %

Uncorrelated 170 7.4 %

Close at vtx 38 1.7 %

Close at end 11 0.5 %

Matched 14 0.6 %

Almost 40% of the total events have 2 tracks shorter than 15cm 
→ Reconstruction issue or real short tracks? 

→ Leads to rejecting 26 % of the signal!!! 
→ Constrained by PID charge reconstruction
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PID Charge reconstruction

● No charge reconstruction algorithm available and because of scattering in P0D, 
difficult to compute track curvature.

● Principle:

● Compute “expected” track if B = 0

● Compare node position to expected 

position, y-wise. 

● Sum the differences

→ ∑ Δy > 0 = negative particle 

● Tracks must be at least 15cm to compute properly the charge.

● P0D has 2 algorithms for track reconstruction → only using Kalman fitted tracks,

the others are too short / not curved enough.

● To study efficiency, particle guns samples generated: 

→ 20k events each, 0 – 2 GeV uniform, 30°cone along z direction (neutrino beam 
direction), uniformly generated in P0D (π+, μ- , and proton)

1st node

Last
node

Expected if B=0

Δy

Z (beam)

Y

Node
(hit cluster)
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Charge reconstruction (2)

● Pions, muons and protons have with energies 
between 0 and 2 GeV.

● If 2 tracks “matched” into 1, charge cut applied 
on the longest track

● Lower efficiencies for protons and pions 
because more scattering.

Particle gun files
Q ok Mis-ID Fail Total Efficiency

π+ 583 263 0 846 68.9 %

μ- 1 170 114 0 1 284 91.1 %

Proton 912 555 0 1 467 62.2 %

Efficiencies obtained after topologies, 
P0D containment, and Kalman cuts

●π+
●μ-
●proton

Expected track method
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Efficiency and purity

Purityi = 
Nb. of NCπ+-like after cut i

Total nb. of events after cut i
Efficiencyi = 

Nb. of NCπ+-like after cut i

Generated nb. of NCπ+like in FV

If recon. was ideal

Total NCπ+
like

CCQE
like

ACCQE
like

CC
like

NC
like

No FS Out of 
FV

After cuts 2 612 144 1 173 277 266 145 87 520
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NCπ+ conclusion

● Efficiency needs to be increased: 
● Recover events with short tracks or uncorrelated tracks
● Include parametric fitted tracks
● Improve track reconstruction, in particular for kinked tracks

→ Better reconstruction algorithm under study. 

● To increase purity:
● Optimize selection cuts / change cut order 
● Add unused hits to the initial charge deposition cut to improve 

CC-like rejection

Measurement feasible once reconstruction becomes more efficient
On stand-by for now
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Other work for T2K

● Feasibility study: calibration of the absolute momentum scale of the 
tracker by reconstructing the invariant mass of K0 

→ feasible if good control of backgrounds

● Micromegas-bulk module cross-talk measurements.

→ measured the cross-talk between 2 neighbouring pads with a 55Fe 
source.

● Participated in the production and testing of the Micromegas modules at 
CERN 

→ gain and uniformity mapping, supervision of detector baking.

● Participated in the installation of the TPCs in Japan and tested the 
front-end electronics.

● Pion formation zone reweighting implementation to study impact of 
formation zone on cross-section measurements / oscillation analyses.
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Liquid Argon TPC in a Test-beam
(LArIAT)
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Liquid argon TPCs

● Small neutrino cross-sections → massive detectors needed

● Better than 80% signal (CC ν
e
) efficiency (T2K efficiency ~ 66%)

● ν
e
 appearance background rejection (π0) → photon / electron discrimination 

possible

● Detection through ionization (3D tracking) and scintillation (trigger)

● Ionization electrons can be drifted over long distances → large detectors possible

● Good dielectric properties → high-voltages possible

● Liquid argon is cheap and easy to obtain
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LArIAT Goals

“How well known are the energy resolution and 
particle identification capabilities of LArTPCs?”

→ Place a LArTPC in a charged particle test 
beam = LArIAT is born!

● Goals:

● Electron / photon shower separation

● Optimization of particle identification :

→Proton ID, proton / K separation

→Kaon ID, K / π / µ separation

● Muon and pion sign determination 
without magnetic field → efficiency, 
purity

● Cross-section measurements

e-

γ  → e+ e-

ArgoNeut

Modified ArgoNeut cryostat for LArIAT
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LArIAT Design
● Refurbished ArgoNeut TPC and 

cryostat.

● Features:

● Active volume: 175 L (550 L 
cryostat) 

● 90 cm x 40 cm x 47.5 cm TPC
● 3 wire planes: 1 induction, 1 

collection plane, 1 shield
● Scintillation light collection: 2 

standard PMTs (+ 2 SiPM)
● New cryogenic system
● Cold readout electronics
● New DAQ

Beam

LArIAT sliced top view
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What do we want to monitor?

● The experiment will be in a beam enclosure area so it is important to be able to 
control the devices remotely and if possible place them outside...

● “Basic” items :

● Beam: beam triggers, power
● Cryo: temperature, pressure, levels
● TPC wire planes: voltages, currents
● TPC and veto PMTs: voltages, currents

● A bit more sophisticated:

● Beam: particle type, particle momentum
● Cryo: purity, filters
● Wire planes: pedestals, hit occupancy, pulse shape
● PMTs: noise level / pedestals
● Electronics: nb. of crates / cards / channels

Responsible for this part
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How do we want to monitor?
● Which framework? 

● Re-use old system? Not possible, ArgoNeut did not have an 
OM framework.

● Needed quickly, cannot start from scratch... 

→ Accelerator control based framework, ACNET
● Needs to be easy to use

→  Java based GUI Synoptic.

● Is it compatible with the equipment we have?

→ no, ArgoNeut did not have remote control so when possible, 
we need to upgrade to “ACNET friendly” devices.
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HV supplies: old and new
Glassman LX-125: for cathode HV
Exists in ACNET, but with RS232 protocol,
C. Briegel (AD) has built an HRM as 
interface... currently working on installing it. 

LeCroy 1440: for TPC wire planes bias and PMTs
Replaced by AD cards. (provided by B. Fellenz)

Positive voltage

Negative voltage
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Online monitoring status

● Display and controls ready for most HV supplies 

→ some are still on waiting list to be added to ACNet

● Cryogenic system will have iFix controls

→ implementation is quite straightforward since used for NOνA: only 
need to provide a list of device tags.

● Looking for beam information: should be in ACNet already...

● Waiting for DAQ to define data to be monitored

→ DAQ currently working on converting raw data into a user friendly 
format

→ Possibility to use “fake” ACNET devices as input and the use 
Synoptic for the displays.

● Will request IFBeam and Lumberjack logging as soon as the number 
of devices is defined.
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So... what does it look like?
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Conclusions

● To study neutrino oscillations, the energy and flux spectra of the 
neutrinos are needed, both before and after oscillation, therefore a good 
understanding of the neutrino beam is needed.

● To properly measure the flux, cross-sections need to be measured as 
precisely as possible.

● To measure cross-sections, reconstruction must be efficient. 

● Since neutrino oscillation physics is switching to liquid argon technology, 
it is essential to understand how the neutrino interaction outgoing particles 
behave in argon.

● In general, because of the small neutrino interaction cross-sections, 
more intense and more pure neutrino beams are required so we need to 
improve the neutrino beam production.
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Thank you for your attention!
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Back up
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● Flavour (interaction) eigenstates ≠ Mass (propagation) eigenstates, linked by the 

PMNS mixing matrix:

c
i  j

 = cos θ
i  j

, s
i  j

 = sin θ
i  j

, δ = CP violation phase

→ oscillation parameters: 2 Δm²
i  j

 (Δm²
i  j 

= m²
i
 - m²

j
), 3 mixing angles θ

i  j
 and 1 phase. 

● All parameters have been measured except δ.

● Oscillations important because:

● First (and only) experimental proof that neutrinos are massive.

● If δ ≠ 0 then CP violation in leptonic sector → hint for leptogenesis.

N      ν oscillations mechanism

FLAVOR MASSPMNS matrix
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N    ν osc. state-of-the-art

● Solar neutrinos (ν
e
 disappearance) + KamLAND (reactor ν

e
 

disappearance)

➔  sin2(2θ
1 2

) = 0.857 ± 0.024 

➔  Δm²
2 1

 = (7.50 ± 0.20) x 10- 5 eV2 

● Atmospheric neutrinos + long baseline (ν
µ
 disappearance) 

➔  sin2(2θ
2 3

) > 0.95 (C.L. 90%) 

➔  Δm
3 2

2 = (2.32 ± 0.12) x 10- 3 eV2

● Reactor ν
e
 (disappearance) + long baseline (ν

e
 appearance)

 
➔ sin²(2θ

1  3
) = 0.095 ± 0.010  

 

KamLAND

Homestake, 
SAGE, 

GALLEX, SNO, 
Borexino

MINOS
Super 

Kamiokande

RENO
Daya Bay

T2K
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● All charged current processes can be tagged with the corresponding outgoing 

lepton, such as the μ - for an incoming ν
μ
 .

● CCQE are important because the neutrino energy can be reconstructed using 

only the muon momentum p
μ
 and its angle θ with respect to the incoming 

neutrino:

Neutrino energy

 → neutron not free so must take into account its 

binding to the nucleus through the binding energy ε 

(set to 25 MeV)
 → m

N  e  f  f
 = m

N
 – ε . 
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Leptogenesis

● Matter excess observed in the Universe:

→ where n
B
 is the number of baryons, n

γ
 is the number of photons.

● Sakharov conditions verified only qualitatively, not quantitatively:

→ CP violation in the quark sector due to the complex phase in the CKM matrix is 10 

orders of magnitude below the observed asymmetry.

● Leptogenesis theory: explains how leptonic CP violation can contribute to the matter-

antimatter asymmetry, by propagating a lepton-antilepton asymmetry to the baryon-antibaryon 

asymmetry.

→ requires Majorana neutrinos, and a heavy right-handed neutrino singlet.
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● 1st long baseline experiment using off-axis. 

● Quasi-monochromatic beam → tuned at 

expected oscillation maximum

● Reduce high energy neutrinos which create NC 

background

T2K neutrino beam
Why off-axis?

Neutrino flux simulation at ND280

● Beam is mainly ν
μ

● ν
e
 contamination ~ 1% of total flux
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m
e

s
h

pa
d

pa
d

P
C

B

B = 0.2 T

E ~ -200 V/cm

e-

Gap = 128 µm

µ

MICROMEGAS
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● Cuts applied to select the muon candidates (in order):

● 1) µ candidate tracks must have at least 1 TPC segment that crosses ¼ TPC length 

→ momentum and dE/dx reconstructed correctly.

● 2) Select negative tracks, then select the one with highest momentum per event 

→ muon carries most of the momentum.

● 3) Track must start in either FGD1 or FGD2 ( fiducial volume cut: 78% of the total 

volume) → ν don't leave tracks, must be sure the interaction is in the FGD.

● 4) Particle identification cuts: 

● Compatible with µ  hypothesis at < 2.5 σ 

● Incompatible with e hypothesis at > 2 σ 

Fiducial volume

1.6 m

1.8 m

CC purity (CCQE): 84.35% (42.71%)

CC in fid. vol. efficiency: 46.04%

After selection: 2003 data events

Flux fit event selection
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Selected sample

→ µ purity of the sample: 84% 

● Data-MC difference after selecting highest momentum negative TPC track → sand muons 

not simulated in the MC.

● Ratio data/MC = 95.1%  good, 4% difference after the muon PID cut.

● Calibration issue on the dE/dx which leads to a difference between data and MC, and 

between the different TPCs → a correction must be applied on the expected number of 

events → systematic related to the correction.
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Flux fit: µ candidate momentum plots

● Each topology enhances the 

expected interaction type.

● Better understanding of 

backgrounds → out-of-FV 

events are the main source of 

background.

● Data / MC differences: 

● MC excess in single track

● MC deficit in all other 

topos. 

● Results consistent with 

previous CC selections.
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    True energy contributions to E
meas

● Correction factor: ratio of the total histogram to the sum of  E
t r u e

 < 10 GeV 

histograms, same for all topologies.
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● Good agreement between the calculated expected 

nb. of evts. and the measured nb. of evts. when fixing 

flux factors to 1. 

● Fit the full MC sample, quality of the fit measured 

by 2 types of χ² 

● Spectrum χ² → characterizes shape of the 

energy spectrum

● Flux χ² → how far from predicted flux? (8 dof) 

→ correlation up to 75% (neighboring f
i
)

Fitted flux factors for both fit 
configurations

● Fit each topology separately →  flux χ² consistent with 8 dof χ² and f
i
 consistent with 1.

Validation with full MC 
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Comparison measured vs expected (blue) event 
number per measured energy bin for each topology.

→ Good agreement for all topologies.

Validation full MC (2)
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● Divide the MC sample into POT
D  A  T  A

 equivalent sub-samples     

→ 33 MC samples.

● Fit each sample individually and fit each flux factor distribution 

with a Gaussian → no bias.

● Pulls for each flux factor are good (means consistent with 0 and 

sigmas consistent with 1) → errors are well computed.

● Flux and spectrum χ² consistent with expected χ² distributions.

Mean and σ of the Gaussians fitting 
the flux factor distributions

      Validation with 33 MC samples  

4-topology fit χ² 
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● Genie and NEUT are 2 different ν interaction generators. 
● Efficiency for each topology = Global ε x relative ε with

● With GENIE, spectrum χ² better, in particular for 
topologies mu + proton and mu + MIP

● Event migration between topologies can be due to final 
state interactions (FSI).

Fitted flux factors (4-topology fit)

Spectrum χ² and contribution from 
each topology

CCRES relative efficiency

       Systematics (2): FSI – Genie vs NEUT
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● Main source of background, not modeled.
● Fitting simultaneously the out-of-FV fraction 

→  "normalization" error

● Divided the out-of-FV contribution according to true 
vertex position: magnet, P0D + ecal, or tracker. 
● Applied ± 50% variation on the P0D-ecal or tracker 
relative fraction , keeping the total fraction constant 

→ "shape" error.

Flux factors variations 
(combined shape + norm.)

Systematics (3): Out-of-FV
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● -3.2% correction because of prediction excess (due to nb of 
atoms) → ± 1.6 % systematic

● Data presented an overall deficit of 4% with respect to MC
because of muon PID cut → ± 2 % systematic

● Measured energies up to 5 GeV but the contribution from 
true energies > 5 GeV not fitted 
→ ± 30 % variations on the flux factors for E

t r u e
 > 5 GeV 

(normally fixed to 1)
→ Error increases with true energy since contribution from 
E

t r u e
 > 5 GeV is more important for the last measured bins 

(slide 12)

● Detector systematics still need to be computed.

Flux factors variations 
when E

t r u e
 > 5GeV flux 

factors variate

Systematics (4): other
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Expectations from truth

Events generated with a primary vertex in 
the P0D fiducial volume:

NEUT channel

Total 581 872 100 %

NCπ+ 9 059 1.6 %

CCQE 219 681 37.8 %

CCπ+ 100 953 17.3 %

CC-other 89 548 15.4 %

Anti-ν CCQE 5 557 0.9 %

NCE 94 048 16.2 %

NC-other 63 026 10.8 %

FSI

→ Main background is CCQE-like

Final state

NCπ+ like 8 312 1.4 %

CCQE-like 250 107 43 %

Other CC-like 146 928 25.2 
%

ACCQE-like 6 424 1.1 %

Other NC-like 163 353 28.1 
%

No final state 6 748 1.2 %
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Charge reconstruction

Expected track vs initial direction methods

Pi+ Mu- Proton

Continuous line = charge computed using initial direction
Dashed line = charge computed using expected track if B = 0

→ Will only use the expected track method for now.
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Misidentified tracks

Expected track if 
B = 0

kinks

Sum of ΔY > 0 = negative particle
Sum of ΔY < 0 = positive particle 

Tracks not curved enoughKinks can change the expected track
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Improvements 

● Angles re-defined: between neighbouring nodes in X 
or Y layer, defined with respect to the central node 
every 3 nodes (1 node per XY layer → either blue or 
red dot).

● Compute angle between “neighbour” nodes to 
localize kinks 

- re-compute expected track for the longest            
       segment before/after kink.

- re-compute sign of curvature
- if more kinks for pions than muons, might be        

       used to discriminate pions from muons if               
significant difference.
- compute a likelihood based on this angle              

       distribution

● Kink = small angle!
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Improvements 

● Computed angles between neighbor nodes to localize kinks.
● There is a difference between muon and proton/pion angle distribution:
→ muon scatter less than pions / protons, might be able to use this to discriminate pions 
from muons

● Kink if angle  < 2.5 rad.

→ no improvement observed in charge reconstruction still, will conclude when kinked tracks 
matching is done.
 

● Pi+
● Mu-
● Proton

Kink cut

● Pi+
● Mu-
● Proton
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Charge deposit, 1st 4 hit clusters

CC and other NC deposit more in
 1st clusters:
→ for CCQE: when the proton is not 
reconstructed.
→ for NCE: because protons deposit more
than pions.

Sum of Q deposit for 1st 2 nodes

→ CUT AT 120
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Muon-like pull

Muon-like pull cut to discriminate NC-like events = pull < 20

CUT AT 20

ZOOM

Pull = Σ Q
meas

 - Q
expected

σ
expected

Track nodes

Muon-like pull definition (P0D NCE analysis, D. Ruterbories)

Pions are similar to muons so this pull cut rejects proton-like tracks.
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Reduction table per final state

CUTS
Total NCπ+

like
CCQE

like
ACCQE

like
CC
like

NC
like

No FS Out of 
FV

Generated 
in FV

581 872 8 312 250 107 6 424 146 928 163 353 6 748 -

1-2 recon. 
tracks

269 403 1 395 83 313 2 706 23 770 12 802 73 725 71 692

1 or 2 long 
tracks

151 472 1 006 77 704 2 569 18 875 9 040 11 154 31 124

Tracks
matched

136 267 961 69 818 2 492 14 084 8 714 9 730 30 468

P0D 
contained

83 078 775 35 266 515 6 939 7 873 6 135 25 575

Kalman 
only

56 538 561 33 146 489 5 572 5 080 4 108 7 582

Positive 
track

20 137 351 7 925 425 1 913 3 042 2 015 4 466

Charge < 
120

3 839 179 1 424 280 341 630 218 767

Pull < 20 2 612 144 1 173 277 266 145 87 520
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● Goal: 
● Uncertainty  Δp/p < 2% so the systematic error on ∆m²

3  2
 measurement is smaller 

than the statistical error for 5.102 1 POT → 5.10-5 eV2 expected for ∆m²
3  2

.

 
● How?

● Use the DIS events, look for K0

s
 →  π+π- ( Γ

i
 / Γ = 69.2%) 

→ < 400 events per year per ton expected.
● K0

s
 mass is given by:

→ depends only on pion momenta and angle at vertex.

● 3 main steps: 
●  Selection of K0

s
 events: few events 

with complex topology.

●  Reconstruct the K0

s
 invariant mass, 

expected at 497.6 MeV/c2.

●  Determine momentum scale 
uncertainty.

K0

π+

π-

       Absolute momentum scale calibration
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K0 production:
● Few K0

s
 produced: 340 expected per year 

per ton for 10 5 neutrino interactions 

(@750 kW – 10 2  1 POT).

Why so few?

● Produced through deep inelastic 

scattering only:
ν

µ 
+ n →  µ- + mesons (+p)

● ν
µ
  energy > 1 GeV required to produce 

them → tail of the ν energy spectrum. 

● Background must be well understood.

● Main background reducing cut:
→ K0

s
 flight distance

K0 energy

(GENIE output, using J-PARC 
neutrino flux @750kW, 5.104 events)

Physics related difficulties
ν

µ
 energy (GeV)

Peak energy ~ 600MeV
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FGD TPC

Typical event (side view):

Z (ν beam)

Y

▬ 
π+

▬ π-

36.5 cm

● Done only with Monte Carlo (MC). 

● Pure K0

s
 MC, 500 MeV kinetic energy in 

FGD1 volume, 10 000 events 

● K0

s
 decays in the FGD (βγcτ  ~ 5cm).

● Procedure:
● 2 tracks required at least 
● opposite sign curvatures + cut on 

curvature error ( σ < 2.10 - 5 mm-1)
● vertex reconstruction: extrapolation of 

TPC tracks into the FGD 
● π+ and π- energy loss correction.
● K0

S
 mass computed with reconstructed 

angles and momenta.

Calibration procedure
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Reconstructed K0

s
 invariant mass

● Is it enough to reach the required 
precision?

→ Δp
π
/p

π
 < 2 % →Δm

K
/m

K
 < 1.2 %

● Normalised to expected number 
of K0

s 
for 10 2  1 POT

 
:

→ Δm
K
/m

K
 = 1.3% M_K0

s
 (MeV/c2)

Absolute momentum scale

Calibration of the absolute momentum scale with K0

s
 decays is feasible if 

backgrounds are under control.
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Formation zone: motivation

● ∆ decay is not immediate and at 
interaction point → decay time + distance 
= π formation zone

● Pions are produced in the nuclear 
medium, which has a variable density.

→ Final state interactions depend on π 
initial position.

● If the formation zone changes, so does 
the probability of π absorption, escape or 
charge exchange. 

● Final state distributions change 

→ cross-section measurements are 
affected. 

CHARGED CURRENT
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Formation zone in NEUT

● NEUT uses the SCAT parametrisation for 
lab framework (Baranov et. al.) :

Lfstd = p / μ2 → “typical” formation length

 Lf= - Lfstd  ln(random nb. < 1)

● where μ is a “characteristic hadron mass”, 
unpredicted by theory and measured to be 

μ2 = 0.08      GeV2 

 → this is the formation zone parameter 
implemented in T2KReWeight

+ 0.05
−0.04

“Typical” formation length 
for pions

R
max

 ~ 6.7 fermi

(for water)

A large μ2 means a small formation zone 
and vice-versa.
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