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Motivation: Superconducting RF Cavities

Provide accelerating gradient for high-performance linear
particle accelerators

e Applications include the International Linear Collider, Project X,
nuclear energy, . . .

Made from ultra pure niobium (>99.98%,)
® Type Il superconductor with T, = 9.8 K

Operation in the superconducting state decreases losses due
to surface resistance by ~106
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Motivation: Losses in SRF Cavities
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Motivation: Losses in SRF Cavities
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Motivation: Recovery from Loss
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T. Schilcher, TESLA-Report, TESLA 95-12, DESY (1995)

Resistance -> dissipation -> need quick heat removal

Thermal conductivity in the bulk is important
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Motivation: Empirically Developed Cavity
Processing Procedures

Some important techniques

e Buffered chemical polishing of outer surface — increase heat
transfer

® Bulk electropolishing (~150 ¢ m) of inner surface — remove
damage layer from forming

® 600-800 °C bake — eliminate Q-disease

® Tumbling — smooth surface

®* High pressure rinse — remove dust (prevent field emission)
e 100-160 °C bake — mitigate Q-slope

®* Nitrogen treatment — increase Q

Much recent research into physical mechanisms occurring
during these steps and the resulting cavity performance
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Motivation: Impurities in Niobium

The surface oxide could be a source of Q-slope

~20 A NbO ® Supply of dissolved oxygen
20 A{ . in the bcc niobium — lowers

| 0 T. by ~0.9 K per at. %
e Surface layer can be highly
defective or amorphous

Dissolved N and C may have a similar effect as dissolved O

Hydrogen could be responsible for Q-slope and Q-disease
® Ordered hydride phases have a superconducting T, < 2K

® Precipitates larger than € may be the culprit of Q-disease, while
smaller precipitates may contribute to Q-slope

Considering the proximity effect and that hydrides are metallic,
€~ 0.5um
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Density Functional Theory Modeling

bcc Niobium NbH (B niobium hydride)

Build a crystal
structure -=>

Infinitely expand
structure with periodic
boundary conditions Compare properties of different structures

Solve the electronic structure problem for the model systems
using density functional theory in VASP

Assess properties such as binding energy, charge distribution,
and niobium lattice strain
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Properties of the Interstitial Impurities

tetrahedral absorption octahedral absorption

(H)
2

Nb;,gH Nb;,50 Nb;,gN Nb;,5C

Charge on interstitial atom (e’) -0.65 -1.35 -1.63 -1.76
Binding energy (eV) -2.41 -7.02 -7.39 -8.48
Lattice strain energy (eV) 0.11 0.83 0.83 0.96

Ford D C, Cooley L D and Seidman D N 2013 Supercond. Sci. Technol. 26 105003
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Impurities Around Niobium Lattice Vacancies
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Ford D C, Cooley L D and Seidman D N 2013 Supercond. Sci. Technol. 26 105003
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Niobium Lattice Vacancies Can Nucleate
Ordered Impurity Phases
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Impurities Can Work Together to Prevent
Detrimental Phases from Forming
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Application to SRF Cavities

Proposed mechanism for the low temperature anneal:

-> Hydrogen is liberated from both the ordered hydride
phases and the niobium site vacancies

-> Some oxygen diffuses from the oxide phases or niobium
interstitial sites and becomes trapped by the niobium
vacancies in the near surface region

-> Hydrogen is trapped by other impurities or defects rather
than an ordered phase

Application to cavity processing procedure:

-> Control the recovery state of the niobium to reduce
hydride phase nucleation centers

-> Dope the niobium with O, N, C to trap H atoms
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Difference Between Impurities Around Niobium

Lattice Vacancies

Binding Energy (eV)

C -0.39 0.00
N -0.29 -0.25
O -0.22 -0.79
H n.a. -0.32

Preferred binding site correlates with ground state electron

configuration of impurity atom.
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Difference Between Impurities Around Niobium

Lattice Vacancies

Two Impurities Near Vacancy

Binding Energy (eV)

C -0.89 -0.14 0.46
N -0.57 -0.61 n.a.
O -1.65 n.a.
H n.a. -0.70 n.a.

C is special! Can it form longer chains in extended defects?
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Raman Spectrum of Hydrocarbon Chains in

Niobium
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Niobium Lattice Di- and Tri- Vacancies

The formation energy of tri-vacancy clusters is approximately
equal to the sum of the constituent vacancy pairs
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Carbon Chains in Niobium

BE. (eV) -0.35
BEnoc (V) -0.03

Longer chains quickly become unfavorable
C-H in Nb spontaneously dissociates

|s a surface or surface-like defect, such as a grain boundary,
required for chain formation?
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Carbon Clustering in Niobium

BE, (eV)

BEnoe (V) -0.45

Favorable for C to cluster

C can form Cottrell atmospheres around niobium lattice
vacancy-type defects
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Application to SRF Cavities

Decrease in DOS at the Fermi level for interstitial C is
similar to interstitial O

-> This may allude to a similar decrease in T,

-> Effect is mitigated as C absorbs near Nb lattice vacancy-type
defects

Lower solubility of C in Nb than the other interstitial
iImpurities and strong attraction to vacancy-type defects
indicates that C will likely be found near these sites

NbC is an electron-phonon superconductor with an 11 K
T., so its formation is not detrimental like NbH
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Interface Properties
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Broadening of acoustic states at the interface alludes to
possible changes in superconductivity
-> needs further investigation
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Summary

First-principles calculations have shed light on
Important physical processes occurring in the
material of SRF cavities

® The interactions between H, O, and niobium lattice

vacancy-type defects play an important role in the low
temperature anneal

e O, N, and C can trap H and prevent detrimental
hydride phase formation

e Subtle differences in the interactions between O, N,
and C with niobium lattice vacancy-type defects may
have important effects on niobium’s properties

® The interfaces between niobium and impurity
precipitates may affect superconductivity
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Superconductivity Review

H A
A _/ superconductor
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Superconducting Radio-Frequency (SRF) Cavities
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0,: normal state conductivity; T.: superconducting transition temperature
A : London penetration depth; I: electron mean free path
G- superconducting current coherence length for the pure material

Operating Conditions

T: temperature; w: frequency
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