
Lattice Design of a Low Emittance 100 TeV p-p Collider  

 

1.  Introduction 

There is a renewed interest in a high-energy (100 TeV c.o.m.) p-p collider. R. Palmer came up with a 

concept [1] that significantly differs from the approach pursued by the FCC collaboration [2]. The major 

difference is a small transverse emittance which can be achieved using one of novel stochastic cooling 

techniques: either coherent electron cooling that uses electron beam as a probe and kicker, or optical 

stochastic cooling.  

Small transverse emittance will permit to obtain the required luminosity with smaller number of protons 

per bunch and higher bunch sequence frequency thus solving the problem with the event pileup. 

Another advantage of small emittance is smaller transverse beam sizes allowing for smaller magnet 

apertures and/or lower *. 

Another important difference is a lower dipole field in the arcs (8-9T) which optimizes the cost of the 

machine and alleviates problems associated with heat deposition by synchrotron radiation. At the same 

time this raises the question if the reduced radiative damping will be sufficient to overcome the IBS. To 

answer this question as well as how low * can be achieved a ring design is necessary. 

In this report a first look at the lattice utilizing the advantages of R. Palmer’s proposal is presented. 

2.  Beam parameters 

Table 1 summarizes beam parameters proposed in [1]:  

Parameter Unit Value 

Beam energy, E TeV 50 

Protons/bunch, Np - 1010 

Transverse emittance, N () mmmrad 0.43 

Longitudinal emittance, LN cm 6.4 

Bunch length, s cm 5.5 

Energy spread, E/E - 2.210-5 

Bunch period ns 5 (2.5) 

For longitudinal emittance the LHC design value was taken, in CERN units it is 4LNmpc = 2.5 eVs. The 

corresponding relative energy spread at the considered high energy is fairly small thus raising question 

of potential coherent instabilities. The most dangerous effect is switching off the longitudinal Landau 

damping due to incoherent synchrotron tune shift by wake fields [3]. We will use the analysis presented 

in the cited paper to estimate the instability threshold after the lattice parameters are established and 

justify the energy spread value of Table 1. 

3.  Interaction Region 

To achieve the desired luminosity the beta-function at IP should be smaller than with other FCC 

proposals. On the other hand, smaller N and Np allow for a smaller crossing angle so that the required 

aperture of the final focus quads is not very large. 



For the distance L* from IP to the 1st quad we take twice the LHC value.  

Table 2. IR parameters: 

Parameter Unit Value 

* cm 5.5 

full crossing angle,  rad 145 

L* m 46 

 
The quadrupoles are supposed to be cut in sections no 
longer than 6 m with 30cm gaps between them (this 
takes into account ~2b difference between physical 
and magnetic length, b being the bore radius, and at 
least 8cm thick endplates). Distance between such 
groups of quads was set at 1 m.  

Determining the required quadrupole aperture we 
follow the design proposed for HL-LHC [4] which is 
shown in Fig. 1 for the HL-LHC 1st quad. 

In the LHC case the difference between the quad bore 
and the beam pipe radii is 2.5 cm, the W absorber 
thickness being 1.5 cm. Here we increase it by 1 cm for 
the first section of Q1 so that the bore-pipe radii 
difference is initially 3.5 cm and then tapered down to 
the same 2.5 cm in the last Q1 section. Determining 
the bore radius b we assume that the beam pipe 

radius is at least z/2 +10 Max(x, y), where z is 
distance from the IP. 

The most important guess is what quad tip field can 
be achieved in the near future. We take a modest 
value of Btip = 12 T despite the more optimistic 
prognosis of 13 T with >20% operational margin for 
Nb3Sn technology [5]. With HTS Btip = 16 T is probably 
achievable.  

Quadrupoles parameters satisfying the above 
requirements and the optics functions were sought 

for in a self-consistent way. Thus found beam sizes in the inner triplet are shown in Fig.2. The maximum 
value of the beta function is 188.7 km.  

Table 3. The IR quadrupole parameters. 

Parameter Q1 Q2 Q3 

Gradient, T/m 285.7 284.0 258.4 

Aperture, mm 84 84 94 

Number of sections 3 5 3 

Section length, m 5.4 5.6 5.4 

The cited apertures do not provide additional room for orbit errors (on top of 10 clearance). 

 
Figure 1: MARS model of the innermost region of 
the HL-LHC Q1 quadrupole 

 
Figure 2: Beam envelopes vs distance from IP 



4.  Arc and Matching Section 

Large beta function values in the IR quadrupoles make the multipole errors in these quads potentially 
very dangerous. Nonlinear correctors of these errors can be placed only where the beams are separated 
to avoid the feeddown effect. We keep beta functions ~ constant over the separation region (Fig. 3) to 
make these correctors more efficient – this is a major difference with other FCC IR designs. Small beta 
function slope also minimizes kinematic nonlinearities and the dispersion invariant generated by 
separation bends. Further studies will show if this innovation is really helpful. 

 
Figure 3: Optics functions and layout of IR, matching section, dispersion suppressor and the 1st arc cell on each 
side of IP. Bends are shown in orange, quads in blue. 

 
Figure 4: Montague chromatic functions as found. 

For the arcs we use regular 90/90 FODO cells with length 536 m chosen to keep max < 1km (actual 

value being max = 912.5 m). There are 74 bending magnets per cell having 6 m length and 8.35 T field. 
The number of full cells per arc is 141. For the dispersion suppressor we chose the classical 2-cell 
scheme which allows for exact matching of the dispersion and its slope for the two beams. 

The ring layout is simplified in this study, it has just 2 opposite low-beta insertions. The full length of the 
ring is 158.7 km. 

The most detrimental effects associated with low * come from chromatic perturbations. With 2 IPs it is 

possible to achieve their cancellation if the phase advances between IPs are an odd multiples of /2. 

Then the overall tunes will be half-integer which is beneficial for orbit stability and dynamic aperture. 

We chose the fractional tunes 0.425, 0.415 which are a mirror reflection of the well-tested Tevatron 

tunes. The integer part of the tunes for the chosen number of arc cells is 74. 

As found values of the Montague chromatic functions are shown in Fig. 4. Thanks to small energy spread 

the -functions variation at 1E is just 2.4% at IPs and about 8% in the arcs, so from this point of view 

there is no need in splitting focusing and defocusing sextupoles into subfamilies.  



However, it is the higher order chromaticity which 

is most detrimental. Figure 5 shows dependence 

of the tunes on the relative momentum deviation. 

It is dominated by the third derivative: 

Qx=2.721010, Qy=2.571010. In principle, the 

third order chromaticity can be corrected with 

decapoles in the arcs, but the required strength is 

very large. On the other hand, the stable 

momentum range (-0.0004, +0.00025) seems 

sufficient owing to small energy spread. If further 

studies will indicate that it is not really so then 

introduction of special “chromatic correction sections” must be considered. 

Sextupole strength needed for linear chromaticity correction is quite low, therefore - with higher order 

chromaticity left untouched - the on-momentum dynamic aperture in ideal lattice is large. The fringe 

fields are unlikely to drastically reduce it since the IR quad apertures are rather small. 

Table 4. Basic parameters of the lattice: 

Parameter Unit Value 

Circumference, C km 158.7 

Number of IPs - 2 

Tunes, Qx / Qy / Qs - 74.425 / 74.415 / 0.00224 

Momentum compaction, c - 2.2210-4 

Stable momentum range % -0.04, +0.025 

RF voltage @ 400 MHz MV 33.6 

Radiation damping times s 2.2104 / 2.2104 / 1.1104 
IBS lifetimes s 5.2104 / NA / 2.5105 

Natural energy spread - 3.810-6 

Peak luminosity s-1cm-2 2.71035 (5.41035) 

 
5.  Longitudinal stability 

To estimate the instability threshold due to loss of 
the longitudinal Landau damping we will use theory 
developed in [3]. In dimensionless units employed in 
that paper the emittance is 
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where  is relativistic mass factor, h=211746 is the 

RF harmonic number. Assuming that the distribution 

is effectively truncated just at 2 we have for the 

limiting value of the action variable   
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Figure 4: Tunes vs relative momentum deviation 

 
Figure 5: Threshold intensity parameter vs limiting 
action value (borrowed from Ref. [3]) 



Using scaling law established in [3], kth~Ilim
5/2, we obtain by extrapolation of the middle curve in Fig.5 

kth=0.01 or, for the threshold impedance 
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where rp is classical proton radius. This value is twice the FFC impedance estimate so that there seem to 

be no problem with small energy spread cited in Table 1. 

The author is grateful to A. Burov, N. Mokhov, I. Rakhno and R. Palmer for helpful discussions. 
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