ACCELERATOR DIVISION ADMINISTRATIVE PROCEDURE

ADAP-11-0003

APPROVED ACCELERATOR BEAM INTENSITY OPERATING LIMITS

RESPONSIBLE DEPARTMENT: ES&H RPS

PREPARED BY Wayne Schut DATE 2/10/2020 Radiation Physics Science Department Head

REVIEWED BY Madely School DATE 2/10/2020 Radiation Physics Operations Department Head

REVIEWED BY Toold Jullin DATE 2/10/2020 Accelerator Division Operations Department Head

APPROVED BY ______ DATE _____ DATE _____ Accelerator Division Head

REVISION NO. 10 REVISION ISSUE DATE 2/10/2020

Revision History

Author	Description of Change	Revision No. & Date
Maddie Schoell	Added Reference 33 for Muon Camps.	Revision 10
	Updated "Area" column titles for Muon	2/10/2020
	Campus areas for clarity. Operating Limits	
	did not change.	
Maddie Schoell	Initial use of Revision History table	12/13/2018

Table of Contents

1.0	PURPOSE AND SCOPE	1
2.0	BEAM INTENSITY OPERATING LIMITS	2
3.0	DISTRIBUTION	4
4.0	REFERENCES	5

1.0 PURPOSE AND SCOPE

In accordance with the DOE Accelerator Safety Order, DOE O 420.2C, and as flowed down through the Fermilab Director's Policies, the Fermilab Environment Safety and Health Manual (FESHM) including the Fermilab Radiological Control Manual (FRCM), this document defines the approved accelerator beam intensity operating limits derived from the various radiological shielding assessments or other safety documents such as the Fermilab Safety Assessment Document (SAD).

The table in Section 2.0 specifies the beam intensity limitations for each section of the Fermilab accelerator complex. The shielding assessments conducted for each beamline or experimental area with respect to the FRCM limits found that continuous operation at an intensity defined in the Operating Intensity Limits along with the stated beam energy is safe and defines the normal Beam Permit operating limits.

The Basis listed in the table identifies what limits the beam intensity for each area. The term "Overburden" is used in the table when the Operating Intensity is limited by the shielding surrounding the beamline enclosure. The term "Absorber" is used when the intensity is limited by the thermal and/or mechanical properties of a specified beam absorber. These intensity limits are specified in particles per hour since the concern here is prompt radiation exposures from beam operations. The terms "Groundwater", "Surface Water", and "Air Activation" are used when the intensity is limited by the number of particles that, due to activation of air or unprotected soil surrounding the enclosures, result in radioactivity in the air, groundwater, or surface water. Air, groundwater, and surface water limits are cumulative effects and are expressed in particles per year.

2.0 BEAM INTENSITY OPERATING LIMITS

ť

Area	Operating Intensity Limit	<u>Beam</u> Energy	<u>Basis</u>
Linac	3.54E17 protons/hour	400 MeV	Overburden ¹
Linac to NIF	6.70E17 protons/hour	66 MeV	Overburden ²
Linac Absorber #1	6.40E20 protons/year	400 MeV	Groundwater ³
Linac Absorber #2	6.40E20 protons/year	400 MeV	Groundwater ³
MuCool Test Area to Emittance Absorber (Emittance Mode)	9.60E15 protons/hour	400 MeV	Overburden ⁴
MuCool Test Area to Final Beam Absorber (Experiment Mode)	9.60E14 protons/hour	400 MeV	Overburden ⁴
MuCool Test Area Final Beam Absorber	2.35E18 protons/year	400 MeV	Air Activation ⁵
Booster to MI-8 Line Cell 803	2.70E17 protons/hour	8 GeV	Overburden ⁶
Booster 8 GeV Absorber	6.80E18 protons/year	8 GeV	Surface Water ⁷
MI-8 Line from Cell 803 to Cell 850	2.84E17 protons/hour	8 GeV	Overburden ⁸
Booster Neutrino Beamline from MI-8 Line Cell 850	1.62E17 protons/hour	8 GeV	Overburden ⁸
Booster Neutrino Beam Target Station	7.50E20 protons/year	8 GeV	Air Activation ⁹
Main Injector	2.93E17 protons/hour	8 GeV	Overburden ¹⁰
Main Injector	2.93E17 protons/hour	120 GeV	Overburden ¹⁰
Main Injector	2.34E17 protons/hour	150 GeV	Overburden ¹⁰
MI-40 Abort	1.56E19 protons/year	8, 120 & 150 GeV	Surface Water ¹¹

Area	Operating Intensity Limit	<u>Beam</u> Energy	<u>Basis</u>
Recycler	2.25E17 protons/hour	8 GeV	Overburden ¹²
NuMI	2.25E17 protons/hour	120 GeV	Overburden ¹³
NuMI Target Station	1.24E21 protons/year	120 GeV	Surface Water ¹⁴
P1-P2 Lines Muon Campus Operations Only	6.50E16 protons/hour	8 GeV	Overburden ¹⁵
P1-P2 Lines Muon Campus and Switchyard Operations	5.41E16 protons/hour	8 GeV	Overburden ¹⁶
P1-P2 Lines Switchyard Operations	1.25E15 protons/hour	120 GeV	Overburden ¹⁶
Muon Campus M1-M3 Lines through Delivery Ring to Diagnostic Absorber	3.60E13 protons/hour	8 GeV	Overburden ^{17, 33}
Muon Campus M1 Line to AP0 Target to g-2 Storage Ring	4.32E16 protons/hour	8 GeV	Overburden ¹⁷
APO Target Station	3.20E20 protons/year	120 GeV	Surface Water ¹⁸
Delivery Ring Cleanup Absorber	9.49E18 protons/year	8 GeV	Surface Water ¹⁹
P3 Line to Switchyard Absorber	6.00E14 protons/hour	120 GeV	Overburden ²⁰
P3 Line to M01 Target Train (Meson Primary)	1.68E14 protons/hour	120 GeV	Overburden ²⁰
P3 Line to Meson Test	1.20E13 protons/hour	120 GeV	Overburden ^{20, 2}
Switchyard Absorber	2.98E17 protons/year	120 GeV	Groundwater ²²
M01 Target Train Absorber	7.94E17 protons/year	120 GeV	Groundwater ²²
M02 Absorber	1.74E17 protons/year	120 GeV	Surface Water ²
M03 Pinhole Collimator	1.74E17 protons/year	120 GeV	Surface Water ²²

Area	Operating Intensity Limit	<u>Beam</u> Energy	Basis
P3 Line to Meson Center	1.02E12 protons/hour	120 GeV	Overburden ²³
MC6 Target Pile	5.26E16 protons/year	120 GeV	Surface Water ²⁴
P3 Line to Neutrino Muon	6.00E14 protons/hour	120 GeV	Overburden ²⁵
NM3 Target Station	5.26E18 protons/year	120 GeV	Surface Water ²⁶
FAST Beam to Low Energy Absorber	1.96E17 electrons/hour	55 MeV	Absorber ²⁷
FAST Low Energy Absorber	6.65E20 electrons/year	55 MeV	Surface Water ²⁸
FAST Beam to High Energy Absorber	3.37E18 electrons/hour	300 MeV	Overburden ²⁹
FAST High Energy Absorber	3.40E21 electrons/year	300 MeV	Surface Water ³⁰
FAST Injection into IOTA Ring	3.60E13 electrons/hour	150 MeV	Overburden ³¹
IOTA Ring Circulating Beam	2.00E10 electrons	150 MeV	Overburden ³²

3.0 DISTRIBUTION

An electronic controlled copy of this procedure is maintained on the AD ESH website at: <u>https://ad-esh.fnal.gov/ad_adap.html</u>.

An uncontrolled copy is provided to the Fermi Site Office.

4.0 **REFERENCES**

- Completion of the Linac Shielding Assessment and Verification of Operation at Full Intensity, memo from G. Dugan to D. Cossairt, June 28, 1991, on pages 5-6 of the Linac Shielding Assessment, October 18, 1991. Operation at 400 MeV is documented in Radiation Shielding Assessment of the Linac High Energy Enclosure Following the 1993 Upgrade Installation and Low Intensity Commissioning, C. Schmidt and T. Kroc, September 21, 1993.
- Completion of the Linac Shielding Assessment and Verification of Operation at Full Intensity, memo from G. Dugan to D. Cossairt, June 28, 1991, on pages 5-6 of the Linac Shielding Assessment, October 18, 1991. Overall operation of NIF is documented in Neutron Therapy Facility 1992 Shielding Assessment, A. J. Lennox, April 10, 1992. Note that the NIF operating limit has historically been set at about 10% of what is approved in the preceding documents.
- 3. *Linac Momentum Beam Dump Vacuum*, L. Allen *et al.*, November 2011, Beams-doc-4095, page 27. The straight-ahead dump is structurally similar to the momentum dump, so the same intensity limit is used for both.
- 4. *MuCOOL Facility Shielding Assessment*, C. Johnstone *et al.*, November 1, 2010, page 4.
- 5. *MuCOOL Facility Shielding Assessment*, C. Johnstone *et al.*, November 1, 2010, page 23.
- 6. Booster Shielding Assessment, January 17, 2017, page 5.
- 7. Booster Shielding Assessment, January 17, 2017, page 9.
- 8. **8 GeV Beam Line and MiniBooNE Beam Line Nova-Era Operational Limits**, M. Gerardi, March 10, 2010, post-assessment memo in **Shielding Assessment Document for the 8 GeV Fixed Target Facility**, C. Moore, June 20, 2002.
- 9. *Addendum to the MiniBooNE Target Station Shielding Assessment*, M. Gerardi *et al.*, June 18, 2004, page 3.
- 10. *Main Injector 1500 kW Incremental Shielding Assessment*, W. S. Higgins *et al.*, May 23, 2018, page 3. Note that although the 8 GeV intensity limit could be substantially higher if it were scaled with beam energy, there is no operational need for a higher 8 GeV intensity; therefore, the 8 GeV intensity limit has been set equal to the 120 GeV intensity limit.
- 11. *Main Injector 1500 kW Incremental Shielding Assessment*, W. S. Higgins *et al.*, May 23, 2018, page 6.
- 12. *Recycler Ring Incremental Shielding Assessment 2.25x10¹⁷ Protons/Hour*, W. Schmitt *et al.*, October 3, 2012, page 2.
- 13. Addendum to the NuMI Beam Line Shielding Assessment for 1 MW Operation of NOvA *Experiment*, K. Vaziri *et al.*, July 17, 2018, page 1.

- 14. Addendum to the NuMI Beam Line Shielding Assessment for 1 MW Operation of NOvA *Experiment*, K. Vaziri *et al.*, July 17, 2018, Table 2, page 7.
- 15. P1 and P2 Beamline Incremental Shielding Assessment, M. Geelhoed, February 9, 2016, page 4.
- 16. *P1-P2 Beamline Operating Limits*, W. Schmitt, October 20, 2016, post-assessment memo in *P1 and P2 Beamline Incremental Shielding Assessment*, M. Geelhoed, February 9, 2016.
- 17. Muon g-2 Shielding Assessment, A. Leveling, February 7, 2017, page 5.
- 18. APO Target Station Review Committee Report, C. Hojvat et al., June 9, 1997, Section F, page 10.
- 19. *Delivery Ring Cleanup Abort Design*, A. Leveling, November 3, 2015, Beams-doc-5178, Table 2, page 22.
- Further Explanation of Assessed Beam Intensity for P3 to SY Absorber, M. Vincent, November 14, 2017, post-assessment memo in P3 to Switchyard Absorber Incremental Shielding Assessment, M. Geelhoed et al., September 20, 2017.
- Meson Test Operating Limits Based on Operational Experience, G. Lauten, October 22, 2015, post-assessment memo in 2003 Shielding Assessment for the Switchyard 120 Project, C. Brown et al., April 8, 2003.
- 22. 2003 Shielding Assessment for the Switchyard 120 Project, C. Brown et al., April 8, 2003, pages 9-10.
- MC7 NOvA beam intensity limit, W. Schmitt, November 20, 2018, post-assessment memo in Addendum to the SY 120 Shielding Assessment for the Continued Operation of the Meson Center Beam Line, T. Kobilarcik and W. Schmitt, November 25, 2013.
- 24. Addendum to the SY 120 Shielding Assessment for the Continued Operation of the Meson Center Beam Line, T. Kobilarcik and W. Schmitt, November 25, 2013, pages 8-9.
- 25. *Neutrino Muon Beamline Shielding Assessment*, T. Kobilarcik and M. Geelhoed, February 24, 2012, page 4.
- 26. *Neutrino Muon Beamline Shielding Assessment*, T. Kobilarcik and M. Geelhoed, February 24, 2012, page 9.
- 27. *Shielding Assessment for the Advanced Superconducting Test Accelerator (ASTA) Injector,* M. Church *et al.*, December 12, 2014, page 5.
- 28. *Shielding Assessment for the Advanced Superconducting Test Accelerator (ASTA) Injector*, M. Church *et al.*, December 12, 2014, pages 12-13.
- 29. *Shielding Assessment for IOTA/FAST Electron Injector at 300 MeV*, D. Broemmelsiek and I. Rakhno, August 23, 2017, page 14.

- 30. *Shielding Assessment for IOTA/FAST Electron Injector at 300 MeV*, D. Broemmelsiek and I. Rakhno, August 23, 2017, page 22.
- Fermi National Accelerator Laboratory Safety Assessment Document, Revision 16, Section IV, Chapter IV-3: Fermilab Accelerator Science & Technology (IOTA/FAST) Electron Injector, E. Harms et al., April 23, 2018, ESHQ-doc-1066, page 7.
- 32. Addendum to Shielding Assessment for IOTA/FAST Electron Injector at 300 MeV to add the IOTA Ring with Electrons, D. Broemmelsiek and I. Rakhno, March 27, 2018, page 6.

ŝ

33. *Muon Campus Shielding Assessment for 8 GeV Beam Transmission to the Diagnostic Absorber*, A. Leveling, February 5, 2020, page 5.