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Acceleration of Low 
Intensity Beam 
 No beam loss at 

transition 
 For present parame-

ters of linac beam 
 ~3% loss at 

adiabatic bunching  
 Acceptable maximum 

momentum spread 
(p|transition =2.75·10-3)  

 Minimum bunch length 
(t|transition =0.42 ns) 

 No emittance growth at 
transition  

 Operation at 20 Hz with 800 
MeV (PIP-II) does not require 
additional RF voltage for the 
same RF bucket size  
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Longitudinal Impedance of the Booster 
 Why Knowledge of Longitudinal Impedance is Important? 

 PIP-II requires 1.5 times increase of beam intensity in Booster within 
the same longitudinal and transverse emittances 

 Transition crossing can be a problem 
 Discussion will be concentrated at the beam energy range near 

transition crossing 
 Major contributors to the Booster longitudinal impedance 

 Space charge 
 Decreases fast with beam energy but is still important near 

transition due to very small bunch length 
 Grows linearly with frequency 

   Repulsion below transition 
   Attraction above transition 
 Quadrupole oscillations  

 Wall resistivity  
 Strong beam deceleration at transition where the bunch has 

the shortest length (t ~ 0.5 ns, Ipeak ~ 7.5 A) 
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Impedance of Booster Laminated Magnets 
 Longitudinal impedance of round pipe per unit length 
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 Laminations greatly amplify impedance 
 (1)  , (2) longer current path 
 Impedance of flat chamber  

per unit length [1] 
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 The impedance model is expected work well in a frequency range of 
0.1 MHz – 1 GHz. 

 It takes into account all important details but actual dipoles do not 
have well-known parameters:  h? (Packing factor), ?, ? 

 
[1] “Accelerator Physics at the Tevatron Collider”, editors V. Lebedev and V. Shiltsev  
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Measured Permeability of Soft Steel [Tokpanov, IPAC2012] 
  used in the simulations 
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 Both real and imaginary parts are 
taken into account 
 Steel conductivity at high 

frequencies is assumed to be 
the same as for DC 
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Parameters for the Impedance Calculation 
 Gap between plates is taken 

from known packing factor 
(Booster design report) 

 Dielectric gap: epoxy + 
insulating oxide layer on steel 
 The value is updated based 

on beam measurements 
 F dipole has smaller gap and larger impedance 

  
Dependence of longitudinal impedance of Booster dipole  
on the frequency computed for F and D dipoles. 

Dipole type F D  
Dipole length  2.89 m 
Number of dipoles 48 48 cm 
Half-gap, a 2.1 2.9 cm 
Lamina half-height, b   15.2 cm 
Lamina thickness, d   0.64 mm 
Dielectric crack width, h 25 m 
Conductivity,   2.07·1016 (2.3·106 -1 m-1 ) s1  
Dielectric permittivity,   2.5
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Stretched Wire Measurements of Longitudinal 
Impedance of Booster Laminated Dipoles 

 
Taken from J. Crisp and B. Fellenz, “Fermilab-TM-2145, March 22, 2001. 

 Decent coincidence with the impedance estimate 
 However F magnet impedance ~30% lower than for D-magnet 

instead of being 10% higher 
 We should expect that each dipole has its unique impedance! 
 Measurements of total impedance are required 

 Expected decelerating voltage = (7.5 A)*(300 )*(48 dipoles)≈100 kV 
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Beam Based 
Measurements and 

their Results  



Transition Crossing, Valeri Lebedev, Fermilab, Nov. 23, 2015 10

Beam Based Measurements of the Long. Impedance  
 Direct measurements of Z() requires a continues beam 
 Shift of acceleration phase with bunch intensity allows us to check if 

the considered above model is applicable 
 Minor adjustments are used for the 

final tune of the model 
 They do not change the shape of 

the impedance curve  
 accel is obtained from comparison of 

 RF phase: RFSUM & 
 Bunch timing: RW monitor  

 Two sets of measurements 
1.      January 17/2015 

 1 ms around transition 
 bad time resolution of RW monitor 

2. July 6/2015 
 1 ms around transition + 1 ms around transition 

 improved time resolution of RW monitor 
 Additional measurement of RPOS (Radial position) signal  
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Data Acquisition and Acquired Data  
 Fast digital scope  

 T=1 ms centered around transition 
 1st set: t=0.533 ns, 1.875·106 points per ch., 36 points per RF bucket @ TC 
 2nd set:t=0.2 ns, 5·106 points per channel, 96 points per RF bucket @TC 

 Signals  
 RF sum 
 Wall current 

monitor 
 RPOS for the second 

set of measurements 
 1st set measurements 

Beam parameters:  
 Intensity: 4, 6, 8, 10, 

12 & 14 turn Booster 
injection 
 14 turn =4.3·1012  in 

82 bunches 
 Similar for the 2nd set 
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Measured Signals and Data Analysis 

 

 
 An algorithm computes 

 Fitting RF signal for one period of sinusoid yields for each period 
 (1) zero crossing time & (2) RF voltage  

 Fitting WCM signal to a Gaussian pulses yields for each period 
 (1) Bunch time, (2) Peak height (3) Peak width & (4) DC offset  

 Time difference between RF zero crossing and bunch arrival time yields 
the relative accelerating phase – correction for cable length difference 
is accounted  

The second 
set of 
measurements 
has better 
time 
resolution 
(another WCM 
+ better 
cable) but 
more noise in 
WCM signal 
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RF Phase for Present Transition Crossing  
 Good transition requires an RF phase being at maximum deceleration 

for a short time 
 An increase of accel. phase with intensity is close to expectations 
 Larger variations in accelerating phase after transition point out to a 

stronger deceleration after transition => shorter bunch 

 



Transition Crossing, Valeri Lebedev, Fermilab, Nov. 23, 2015 14

Measurement Results  
 The second set of measurements 

yields a weaker dependence of 
accelerating phase on the beam 
intensity due to higher accelerating 
voltage 

 Both sets verify that the 
deceleration voltage is ~100 kV at 
nominal intensity 

 RPOS data acquired for the second 
set and the measurements at the 
injection energy allowed calibration 
of all relevant parameters  
 That allows detailed comparison 

between simulations and 
measurements 
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Features of Measured Signals  
 There is additional phase difference related 

to unequal cable lengths. It is driven by rev. 
frequency  change with acceleration: 

=2fRFt 
 Not observed in the 1st set of measurements 
 The effect is more pronounced  in the 

injection data: f/f ≈ 7·10-3 versus  3·10-3  
 The delay is 1.05 s (315 m for light) for the 

RF signal relative to the wall current 
monitor signal  

 Beam induces the RF voltage on cavities 
due to changed RF phase of the beam 
 It yields the total effective impedance of 

all cavities in the range 240-280 kQ  
 Shunt impedance: Rsh=150 kW/cavity  
 feedback suppression ~10 times? 
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Signal Calibration Resulting from Data Analysis  
 Addition of Rpos measurements and injection data were allowed to 

obtain accurate calibrations for the following signals: 
 Total RF voltage: Vpeak=1.21·107 VRFsum  
 An estimate of average decelerating voltage due to resistive wall 

impedance: 80 kV/turn for 4.2·1012 
 Calibration of RPOS for p/p @ transition: p/p =0.0694*RPOS(V)  

 1.2 times smaller than expected (D=180 cm,  dx/dV = 15 cm/V) 
 and Location of transition crossing: RF phase swing starts ~200 turns 

before transition 
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Injection Data (2nd data set, 13-turn injection) 
 Beam injection is 170 s (77 turns) 

after magnetic field reaches its 
minimum 

 RPOS feedback puts beam to 
nominal orbit at turn ~220 
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Injection Data (continue) 

   
 Knowledge of RF voltage and bunch length  

yields the longitudinal emittance  
 Effect of impedances is automatically  

accounted in simulations 
 Bunch profile is close to  

a slightly truncated Gaussian 
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RF Phase and Voltage Calibration  
 The RF phase swing results in RPOS changes 

 Known: relative phase changes  
 Unknown: phased offset, RF voltage calibration, RPOS 

sensitivity, deceleration due to impedance 

      
Red - predicted momentum offset, blue – scaled RPOS 

 Comparison of predicted and measured momentum offsets for 
different intensities uniquely yields all unknown parameters  
 Most probably the discrepancy at the end is related to bunch 

shortening and larger deceleration due to impedance 
 Simulations have to verify it   
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Transition Crossing Time 
 Exact location of transition 

crossing is needed for trustable 
simulations 

 Can be obtained from measured 
bunch frequency change introduced 
by the RF phase swing:  
       f/f = (n)p/p  

 Removing offset and linear slope 
makes bunch frequency variation 
due to p/p swing well visible 

 Origin of the second bump is 
unknown 
 Can be due to minor orbit 

variation at the transition 
(f/f ~4·10-6  L~2 mm) 
 A proof should follow  
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Simulations versus 
Measurements  
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Simulation Program 
 Combination of C-program (computations) and MathCad (GUI) 
 Accounts for impedances of dipoles and space charge 

 Implies 84 equal intensity bunches 
 Impedances of dipoles is calibrated by the measured RF phase with 

intensity 
 Measurements do not exhibit significant difference  in behavior for 

bunches in vicinity of the abort gap 
 Both impedances are short range 

 Two dampers 
 Dipole – operates similar to RPOS feedback 
 Quadrupole – feedback on oscillations of bunch length  

 Beam is unstable above transition if the dipole damper is not engaged  
 It results large beam loss (>50%) 

 New GUI driven software is at the initial stage (F. Ostiguy)  
 Takes into account accumulated experience  

 Preliminary results are ready to be shown  
 More work is required to bench mark the simulations  
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Adiabatic Bunching and Initial Longitudinal Emittance 
 Measured bunch length is quite large 

 It requires almost rectangular 
momentum distribution if injected 
beam (before adiabatic bunching) 

 Simulations –  
        4% loss @ turn 400 (0.88 ms) 

 Measurements - 
        5% loss @ ~0.7 ms    
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Input to Simulations – RF Voltage  
 RF voltage was calibrated at transition  

 The same calibration is used at injection 
 There is discrepancy between RFSUM from control system (B:CHG0) 

and RFSUM measured by the scope 
 RF voltage for the rest of the cycle was set to be similar to the 

B:CHG0 data  
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Input to Simulations – RF Phase 
 RF phase was set so that to keep the beam at the reference orbit 

everywhere except 1 ms near transition 
 Phase offset was introduced into the phase profile to adjust for a 

reduced value of the phase jump at transition   

 
 Both feedbacks were off near transition to avoid feedback effect on 

the RF phase 
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Input to Simulations – Longitudinal Impedance  
 Parameters of laminated magnets were adjusted to obtain correct 

shift of accelerating phase with intensity  

  
 Asymmetry of the RF bucket separates the center of the bucket and 

the beam center of the gravity   
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Preliminary Simulation 
Results for 13 turn 
injection 
 Beam loss in simulations (of 

~30%) greatly exceeds 
observations (close to zero) 

 Simulated beam size near 
transition is below measured 

 
 A longer measurement would 

help to resolve the problem  
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Preliminary Simulation Results for 13 Turn Injection (2) 
Bunch distributions and voltages before transition 
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Preliminary Simulation Results for 13 Turn Injection (2) 
Bunch distributions and voltages after transition 
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Conclusions 
 Measurements showed transition crossing details which were not 

known before 
 It is still work in progress 

 1-2 months are required to match ends for the present 
transition crossing 

 We need more data  
 Longer times (1 ms -> 2 ms) 

 Analysis of PIP-II transition crossing will follow 
 It will hardly be a straightforward implementation of the voltage 

jumps technique  
 We also need to find a way how to avoid large energy 

variations near transition 
 It is already well known that additional RF voltage will be 

required at PIP-II intensity  
 


