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Abstract

The Laplace's equations for the scalar and vector potentials describing electric or mag-
netic fields in cylindrical coordinates with translational invariance along azimuthal co-
ordinate are considered. The series of special functions which, when expanded in power
series in radial and vertical coordinates, in lowest order replicate the harmonic homo-
geneous polynomials of two variables are found. These functions are based on radial
harmonics found by Edwin M. McMillan in his more-than-40-years " forgotten” article,
which will be discussed. In addition to McMillan’s harmonics, second family of adjoint
radial harmonics is introduced, in order to provide symmetric description between elec-
tric and magnetic fields and to describe fields and potentials in terms of same special
functions. Formulas to relate any transverse fields specified by the coefficients in the
power series expansion in radial or vertical planes in cylindrical coordinates with the set
of new functions are provided.

This result is no doubt is important for potential theory while also critical for theoretical
studies, design and proper modeling of sector dipoles, combined function dipoles and any
general sector element for accelerator physics. All results are presented in connection
with these problems.
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INTRODUCTION

1. Introduction

What do we know about sector
magnets?’

[1] K. L. Brown, Adv. Part. Phys. 1, 71 (1968).
[2] E. Forest, Beam dynamics, Vol. 8 (CRC Press, 1998).
[3] H. Wiedemann, Particle accelerator physics (Springer, 2015).

Tim Zolkin On sector magnets



INTRODUCTION

)

NUCLEAR INSTRUMENTS AND METHODS 127 (1975) 471-474

NORTH-HOLLAND PUBLISHING CO.
LETTER TO THE EDITOR

MULTIPOLES IN CYLINDRICAL COORDINATES*

EDWIN M. McMILLAN

Received 22 May 1975

Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, U.S.4.

Solutions of Laplace’s equation for azimuthally symmetrical potentials in cylindrical coordinates are found which can be correlated

with two-dimensional multipoles in planes 0 = const. Formulas are presented by which the coefficients for linear combinations of these
solutions can be calculated to describe fields whose values are known along given axial or radial lines.

40> «Fr «
Tim Zolkin On sector magnets



GENERAL EQUATIONS OF MOTION Global coordinates in Lab frame
Global coordinates associated with Frenet-Serret frame

2.1 General equations of motion. Lab frame

Lagrangian of relativistic particle of mass m with electric charge e

In 3-D right-handed Cartesian coordinates, {€;, &;,&s3},

LIR,R; t] = iy ed(R) + e[V - A(R)]
o (V)
R = (Q1, Q2, @3) position vector in the configuration space,
V= (Ql, Q, Q3) vector of matching generalized velocities, "= (‘ft,

®(R) and A(R) are scalar electric and magnetic vector potentials,
v (V) and B(V) are Lorentz factor and ratio of V to speed of light

Y(V) = [L = B(V)?] Y2 BV) = IV|/c
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GENERAL EQUATIONS OF MOTION Global coordinates in Lab frame

Global coordinates associated with Frenet-Serret frame

Euler-Lagrange equations

aoc 9L_ 0 _ (9 9 0
dt 9R OR da  \Oa; Oap Daz

gives the relativistic form of the Lorentz force F = e [E + (V x B)]

d . .
(7 m Qi) = e(Ei + e QB)

where the scalar electric and vector magnetic potentials are
expressed through electric and magnetic fields respectively

E:(El,EQ,E3)E —V‘D,
B = (B, B, B3) =V x A.
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GENERAL EQUATIONS OF MOTION Global coordinates in Lab frame

Global coordinates associated with Frenet-Serret frame

Hamiltonian is defined as the Legendre transformation of £

where P and I are the canonical and kinetic particle’s momentum

Y
P=L _niea MN=~mV.
OR 7

Hamilton's equations give time evolution of the system

dQ_ on o P-eA

dt oP’ Vm2cZ+ (P — eA)?’
dP OH : :

5 = 50" P=¢e(VA)-Q—eVo.
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GENERAL EQUATIONS OF MOTION Global coordinates in Lab frame
Global coordinates associated with Frenet-Serret frame

2.2 Global coordinates associated with Frenet-Serret frame
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GENERAL EQUATIONS OF MOTION Global coordinates in Lab frame
Global coordinates associated with Frenet-Serret frame

Local Frenet-Serret frame {f, b, t} (sometimes called TNB frame)

m Unit tangent vector

f d Ro(S)
ds
m Outward-pointing normal
. 1 dt
~ k(s)ds
m Unit binormal vector
b=tx# i(s)
= (t)| d t is natural parametrization of eq. orbit, and,
0

|d /ds‘ is local curvature.
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GENERAL EQUATIONS OF MOTION Global coordinates in Lab frame
Global coordinates associated with Frenet-Serret frame

Frenet-Serret formulas

t 0 —x 0] [t
di{af =|x 0 7| |A|ds, where 7(s) is torsion.
b 0 —7 0f [b

F.-S. formulas allows to express position vector of a test particle
R(s) = Ro(s) + r(s) = Ro(s) + qift + @b,
dR =hdg; +bdg + (1 + xq1)tdgs + 7(q1b — g2fi)dgs.

For 7 = 0, the local Frenet-Serret frame can be associated with
global orthogonal coordinate system with a line element in a form

3
dl =) hiéidg;, where hy=h=1and h=hs=1+rq.
i=1
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GENERAL EQUATIONS OF MOTION Global coordinates in Lab frame
Global coordinates associated with Frenet-Serret frame

Lagrangian in curvilinear coordinates

2
E[r,i;t]:—mczl—é—ed)—#ev-A

d n .
a(’ym‘/) = e(E+ejx & v Be) +ymg3K

where v = (g1, g2, h g3) is velocity vector in new coordinates, and,
the vector in the RHS defined as

K= (kh,0,x with (...) =
(b0, 1) (Y=o
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GENERAL EQUATIONS OF MOTION Global coordinates in Lab frame
Global coordinates associated with Frenet-Serret frame

Hamiltonian in curvilinear coordinates

gi X hi =

H—ed h,'

2
. o c i Ki (p3 —ehAs
p’/h’_H—e¢[ee’thjBk+h2< h

where components of the new canonical momenta are given by

10L
h; 0g;
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n coordinates
TRANSVERSE ELECTROMAGNETIC FIELDS sio! Cy oordinates

coordinates

3. Transverse electromagnetic fields

® = d(g1,9), A= As(q1, q2)és.

Laplace's equations in curvilinear coordinates
1] 0 oo 0 oo
A = — |— [ h— +<h)] =0
[3671 ( 5671) 0q \ Oq2

b 1a(hAg] [18(hAQ}
@A + — =0
(eA) = oqu [h dq1 0qo |h 0o

E=-—-V® and B =YV X A in curvilinear coordinates

9 b 19(h As)
£ =-22 g — 1
' oq1 ' h 0qg2
90 10(hAs)
E = — - B = — —
2 992 ? h Oq
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t- and z-representations
Multipole expansion in esian coordinates

TRANSVERSE ELECTROMAGNETIC FIELDS Multipole expansion in drical coordinates

Recurrence equations in sector coordinates

Differential operators in curvilinear orthogonal coordinates

Gradient V¢ 3 Loog,

Divergence V-F S5 _, %a%k (hﬂFk)

Curl VxF Y ey (hiF))

Laplacian yANG) Zi:l %%k (ﬂﬂi)

3 1 0 1 0 H
o6 ki [bat (7)) -
é.
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t- and z-representations
Multipole expansion in Cartesian coordinates
TRANSVERSE ELECTROMAGNETIC FIELDS Multipole expansion in drical coordinates

Recurrence equations in sector coordinates

Pure electric field. kK = const

t-representation. H, p3 = inv

Measuring the time in units of ¢ t and normalizing the transverse
momentums over the longitudinal component, p1 > = p12/ps:

H . 1 - - - e
— =H[p12,qroict] = *\/1 + h2(p + P + M2c?) + — @
P3 h p3cC

In paraxial approximation P12 < 1, and for p12 > fc, M= m/p3

)
. pi P35 1 e
H ‘ctl~h [ == + = - o
[p172,q172,c] (2+2>+h+p3c
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t- and z-representations
Multipole expansion in Cartesian coordinates
TRANSVERSE ELECTROMAGNETIC FIELDS Multipole expansion in cylindrical coordinates

Recurrence equations in sector coordinates

Pure magnetic field. k = const

1. Extended phase space (H =inv and t = 7 + ()

—ehAs\?
P3;—‘ 3)_7_[

2. The use of —p3 as a new Hamiltonian

2N\ 2
Klp12,—H; q12,t;q3) = —h \/(c) —m2c2—p2 —p2—ehAs

OEO[p,—’H;q,t:T]=C\/m262+pf+p§+<

3. Generating function Gy(t, —IM) = —t/M?c? + (mc?)?

Klp1, p2, =1 q1, g2, 1, q3] = —hM— e hAs,

where | = —9 G/0N = fc t is a particle's traversed path.
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t- and z-representations
Multipole expansion in Cartesian coordinates
TRANSVERSE ELECTROMAGNETIC FIELDS Multipole expansion in cylindrical coordinates

Recurrence equations in sector coordinates

z-representation. K, 1 = inv

Renormalizng Hamiltonian and momenta by full kinetic monentum,
p12 — P12 = p12/M:

K 5 - N e
0= K[p1,2,q1,2:q3) = —hy/1— B — p3 — n h Az

In paraxial approximation p1> <1

~2 ~92
= ) €

K : ~ Lt ST R
(P12, q12; g3] = h < >+ 5 > h— o hAs

Tim Zolkin On sector magnets



t- and z-representations
Multipole ion i

TRANSVERSE ELECTROMAGNETIC FIELDS

irrence equations in tor coordinates

R- and S- elements

R—element S—element
=X

q, n

q9,=yY ® b el s B

2 q3 =7 b t

Global Frenet—Serret
coordinates frame
— —
Cylindrical Equilibrium
coordinates orbit
NG -
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t- and z-representations
Multip: ion i
TRANSVERSE ELECTROMAGNETIC FIELDS Multig

Recurrenc

>’ 9P

P?A, N ?A, 6 —0
Ox2 ay2 ) *

09 I a0 _ 90 9A,
5z —F@): B=-SF2)| ==0: F=-5-= 3
o 0 A,
F, = -RF(2) Py = =%, = ox
0Z
V xF=
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TRANSVERSE ELECTROMAGNETIC FIELDS

t- md Z-repres ~nht\un<
in Cartesi
in cylindr

Recurrence equations in se

Harmonic homogeneous polynomials

M {ABY, 1 = (AB), =+ (8.4,
RZ" S Z"
~ (n n—k_k ~ (n n—k_k
n|A,= <k>x y cos7 B, (k>x y sm7
k=0 k=0
011 0
1| x y
2| x2—y 2xy
3 3—3xy2 3x2y—y3
4| x* —6x2y2 +y* 4x3y —4xy3
5| x> —10x3y? +5xy* 5xty —10x%y3 4 y°
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t- and z-representations
i xpansion in Cartesi
TRANSVERSE ELECTROMAGNETIC FIELDS Multi pansion in cylindr

equations in se

Normal and skew R-multipoles

One can define two independent sets of solutions

Normal, 27 = — €, ~. Skew, Q) — —ic
n! n!
" — ~C,=n o — _gnﬂ
n! n!
Zgn) = _?nir7 A(zn) = gan
n! n!
*(Xn) . ?n Bn—l E(xn) C -An—l
(r:4— 1)! (n—1)!
£ _ = n—1 (n _ Bn-1
Fy C"(n—l)! By’ = g"(n—l)'
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t- and zrepresentations
Multipole exp: n in Cartesian coordinates

TRANSVERSE ELECTROMAGNETIC FIELDS Multipole expansion in cylindrical coordinates

Recurrence equations in sector coordinates

Normal R-Dipole Normal R-Quadrupole Normal R-Sextupole Normal R-Octupole Normal R-Decapole
y " . 7

92F, 03 F,

X
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ole expz
TRANSVERSE ELECTROMAGNETIC FIELDS Multipole

Recurrence equations in sector coordinates

3.3 Multipole expansion in cylindrical coordinates

100 0?2 10 0?
Bo® =0=0005 50 = 92 T hap T oy

A 52A 10A 92A A
(6~ A)p=0= A~ Ag— p%’ _ 6 0 0 9

02 " pOp  Oy2 P
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ical coordinates
Recurrence equations in sector coordinates

TRANSVERSE ELECTROMAGNETIC FIELDS Multipole expanéion in cylin

3.3 Multipole expansion in cylindrical coordinates

100 0% 10 02
Ad =0=A,b+-22— L 29 F
~P =0=A [8p2+pap+3y2}

Ag 1702 10 02
Ay=0=A Ag— 20 =2 -9 A
(6nR)y=0=2nA =5 p[(?pz pﬁp+8y}(p 2

We will look for solutions in a form

. ]:n—k(P)yk — . k= kT
o = -3 T RPY (T sin <L LEAN
2 (n— k) K Cp sin 5 + C,, cos 5
&Gk (= kr . k=
Ao = =D S pia \Crees g —Casin ),
k=0

where F,,(p) and G,(p) are the functions to be determined.

Tim Zolkin On sector magnets



entations
e nsion in Cartesian coordinates
TRANSVERSE ELECTROMAGNETIC FIELDS Multlpole expansmn in cylindrical coordinates

Recurrence equations in sector coordinates

”? 19
(55 % 755 ) {F:8h = (0~ D{F G}

Lowering operators

1 10 0 110G,

Fo= D |59, \Pag ) | Frez Foe
(n+1)(n+ )[pa ap>] 2 " npop”
1 0
Gn = [3

10 1 0F,
m a>:| gn+27 gn—l — ;p 8,0 .
Raising operators

Py [P
fn:n(n—l)/ / pFn—adpdp,
1 PJ1
PP
:n(n—l)/ p/ —Gp_odpdp.
1 1P
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t- and zrep tions
i n in Cartesian coordinates
TRANSVERSE ELECTROMAGNETIC FIELDS Multipole expansion in cylindrical coordinates

Recurrence equations in sector coordinates

McMillan radial harmonics, F,

0 1
1 Inp
1
2 S(pPP=1)—Inp
2
3
3 RGBT
4 3|50t =0+ 502 - (#45)mo)
B30 (L, ol
5 > [ 8(p 1)+<4p +p +4>Inp}
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1 %(pz—l)
1 2 2
2 1[—2(p—1)+p|np]
3 2[1(/34—1)—/)%/0]
2
4 3[—2(p4—1)+2(p2—1)+p2<p2+1>|np}
5 ﬂllz (p6_1)+4,o2(p2_1)_p2(p2+1)|np]
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fnr gn

TRANSVERSE ELECTROMAGNETIC FIELDS

plot

t- and z-representations

Itipole expansion in Cartesian coordinates

ultipole expansion in cylindrical coordinates
_urrence equations in sector coordinates

2 p(p) Fnp) Gn(P)p n(P)
2 I 2 I
o | |
° \ 14 L
Q'-' I I
o | |
= I I
I |
s -1 0 p i1 2 0 11 2 p
71 71 1 1 1
2 2
Q
= 1 1
v
“
I |
= p 0
-1
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ole expz
TRANSVERSE ELECTROMAGNETIC FIELDS Multipole

Recurrence equations in sector coordinates

Sector harmonics

e ¢ k
A (p.y) = Z(Z) fn—k(p)y"COS%,

k=0
m . gnf kﬂ-
AV (p,y) = Z(Z) k(p)ykcos2,
k=0 P
e 4 .k
BG.) = 3 (7) Freslo)v¥sin 5.
k=0
m . Gn— .
B (p,y) = <Z> (p) y"sin ==
k=0 P
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TRANSVERSE ELECTROMAGNETIC FIELDS

t- and z-representations
Multipole expansion in Cartesian coordinates

Multipole expansion in cylindrical coordinates
Recurrence equations in sector coordinates

L0185, A 10 <p{A, B}(nm))

Oy P dp
(m) e
n , n — =
1 R oy op
(e) (e)
6(’,) _ —fn Bn 9(n) _ 7,,.,4
n! n|
(m) (m)
(n) — An (n) B
Ap” = —Cn n! Ap = Can n!
(m) (m)
(n) _ anl (n) _ 'Anfl
Fo'= C”(n—l)! By = g"(n—l)!
(e) (e)
= _ = A (n) _ B~y
Fy = C”(n_l)l Ey C”(n—l)!
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TRANSVERSE ELECTROMAGNETIC FIELDS

irrence equations in sector coordinates

Pure normal and skew S-multipoles

Normal S-Dipole Normal S-Quadrupole
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t- and z-representations
Multipole expansion in Cartesian coordinates
TRANSVERSE ELECTROMAGNETIC FIELDS Multipole expansion in cylindrical coordinates

Recurrence equations in sector coordinates

Pure normal and skew S-multipoles. 3D view
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t- and z-representations
Multipole expansion in Cartesian coordinates

TRANSVERSE ELECTROMAGNETIC FIELDS Multipole expansion in cylindrical coordinates

Recurrence equations in sector coordinates

n|x= y=20
Ch|1|F F,
2|0y Fc | OcFy
3| —02F, | O2F, + 0 F,
4| —O3F | OFF, +07F, — O« Fy
5|00F, |0fF +203F, —92F, +0F,
Ch| 1] K Fx
2| =0y F, | Ox Fx+ Fx
3| —02F | 02Fc+ 0« F— Fx
4| 03F, | O3F +202F— O Fi+ Fu
5| 05F | OfFk+283F—302F +30«F«—3F,
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t- and zrepresentations

Mult pansion in an coordinates
TRANSVERSE ELECTROMAGNETIC FIELDS Multipole expansion in drical coordinates

Recurrence equations in sector coordinates

3.4 Recurrence equations for sector coordinates

Power series ansatz

e 1 XM yn
e I D D

m,n>0 m,n>0

Vm+2,n + Vm,n+2 = _(m + ]-) Vm+1.n -—m Vm—l,n+2

In order to solve these recurrences, one can look for a solution
_\x (i+j-1) (i+j—2) * * _
Vl,j_vl,jJrv,’J +V,,J +7 m+2,n+vm,n+2:0a

where starred variables are the “design” terms given by pure
multipole fields, and \/i(;) for i +j > n are terms induced by lower
orders and are subject to be determined.
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SUMMARY

Summary

e The scalar and vector Laplace's equations for static transverse
electromagnetic fields in curvilinear orthogonal coordinates with zero and
constant curvatures are solved.

e Described a family of solutions to the Laplace’s equations in cylindrical
coordinates which we call sector harmonics. The radial part is given by
the set of newly introduced McMillan and adjoint radial harmonics.

e Sector harmonics, when expanded around equilibrium orbit, in its lowest
order replicate the solution in Cartesian geometry .

e This set of solutions does not require any truncation and exactly
satisfies Laplace equation, and, provides a well defined full basis of
functions which can be related to any field by its expansion in radial or
vertical planes.

e Including the model Hamiltonians for t- and z-representations, where
no assumptions but the field symmetry has been used, one can construct
numerical scheme integrating equations of motion.
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SUMMARY

4. Summary

e Thus, | would like to suggest the set of sector harmonics as
a new basis for description and design of any sector magnets
with translational symmetry along azimuthal coordinate.
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SUMMARY
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LAST SLIDE

Thank you for your
attention!

ARk

Questions?
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