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Abstract
Two computed tomography techniques are explored to

reconstruct beam transverse phase space using both simu-
lated beam and multi-wire profile data in the Fermilab Muon
Test Area ("MTA") beamline. Both Filtered Back-Projection
("FBP") and Simultaneous Algebraic Reconstruction Tech-
nique ("SART") algorithms [2] are considered and compared.
Errors and artifacts are compared as a function of each algo-
rithm’s free parameters, and it is shown through simulation
and MTA beamline profiles that SART is advantageous for
reconstructions with limited profile data.

BEAM PROJECTION
Computed tomography reconstructs an N-dimensional ob-

ject out of many (N-1)-dimensional projections, examples of
which are pictured in Fig. 1. Similarly, a transverse beam pro-
file is a one-dimensional projection of the two-dimensional
phase space. Computed tomography is thus the reverse of the
projection process, i.e. integrating many (N-1)-dimensional
projections into a reconstructed N-dimensional image. For a
full reconstruction, profile data must exist through a viewing
angle range of π radians [2]. However, to use any computed

Figure 1: 1-D projection of a 2-D object. Traditional tomog-
raphy is the reverse of the projection process.

tomography algorithm, an analogy must be made between
such projections of a physical object and beam profiles [4].
For the projection in Fig. 1, the coordinate systems of the
image and a projection are related by:(

t
t ′

)
=

(
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−sinθ cosθ
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So the projection onto the t axis of a ray passing through
pixel (x, x ′) of the original image at angle θ is:

t = xcosθ + x ′sinθ (2)

Thus Equation 3 describes the general projection P(t, θ)
onto axis t at viewing angle θ of two-dimensional object
f (x, y).

P(t, θ) =
"

dxdy f (x, y)δ(xcosθ + ysinθ − t) (3)

Similarly, neglecting dispersion, the phase space coordinates
for a particle at two locations in a beamline with only linear
forces are related by:(
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(4)

By defining the phase orientation angle θ = tan−1( R12
R11

) and

scaling factor s =
√

R2
11 + R2

12, such that R11 = scosθ and
R12 = ssinθ the beam projection can be rewritten as:

P(x2, θ) =
"

dxdx ′ f (x, x ′)δ(s[xcosθ + x ′sinθ −
x2
s

)

(5)
For beam, each projection P(x2, θ) is a profile measured
with instrumentation like a multi-wire detector. Thus com-
puted tomography algorithms may be used to reconstruct
beam transverse phase space if each profile is scaled hor-
izontally by 1

s and vertically by s, and if the appropriate
scaling factor and phase orientation angle for each profile
are known. Whereas traditional tomography involves rotat-
ing a camera around a fixed object, beam tomography rotates
the phase space distribution while taking projections (i.e.
beam profiles) at the same location in the beamline.

BEAM SIMULATION
To test the efficacy of the computed tomography algo-

rithms, a simple linear particle tracking Python code was
used to build profile data while varying the phase orientation
angle of a simple FODO channel beamline. A deliberately
non-elliptical and asymmetric beam distribution was gener-
ated particle-by-particle, each of which being passed through
the beamline using the thick-lens linear transfer matrix.
A multiwire profile monitor was simulated by taking a

histogram of all particle ’x’ values with 48 bins spaced 1
mm apart; this is typical for the number of wires and spacing
for Fermilab SEM multiwires. For every quadrupole value
in the scan of phase rotation angle ranging π radians, a his-
togram profile is taken at the end of the beamline. The initial
beam distribution is pictured in Fig. 2 in two-dimensional
histogram form. Reconstruction of this simulated data at
the beginning of the beamline was carried out using the
"scikit-image" Python library [6].



Figure 2: Simulated initial beam distribution in 48x48 bin
2-D histogram to mimic multi-wire resolution. The color
scale represents the number of particles in a given pixel.

FILTERED BACK PROJECTION
Filtered Back Projection ("FBP") is a common computed

tomography method first applied to transverse phase space
reconstruction by McKee et. al. in 1995 [3]. This method
applies a standard filter to each projection before "back-
projecting" each and allowing them to interfere; the interfer-
ence pattern forms the reconstructed image.

Described by Equation 6, the FBP reconstruction process
involves computing the Fourier Transform R(ω, θ) of each
profile P(t, θ), then simultaneously back-projecting through
t = xcos(θ) + ysin(θ) and computing the inverse Fourier
Transform. Finally, integrating over all projection angles
produces the reconstruction.

f (x, y) =
"

ωdωdθe2πi (ωxcosθ+ωysinθ) F (ω)R(ω, θ)

(6)
The filter F (ω) is one of the free parameters for FBP re-
construction. Comparing the RMS errors for reconstruction
using each available filter in the Python library, it was deter-
mined that the "ramp" filter F (ω) = |ω | provided the best
reconstruction. Each pixel of both the original histogram
and the reconstruction are normalized by the sum of all pixel
values, so the sum of all pixels for each image is unity. The
error for each pixel is computed by subtracting the recon-
struction pixels from the original histogram pixels. Finally,
the total RMS error is computed for the entire error image.
This allows for a quantitative comparison between tomogra-
phy methods. The FBP reconstruction and associated RMS
error are shown in Fig. 3.

SIMULTANEOUS ALGEBRAIC
RECONSTRUCTION TECHNIQUE

Simultaneous Algebraic Reconstruction Technique
("SART") takes a different approach to tomography than
FBP by considering a ray of finite thickness intercepting the
image to be reconstructed. This is shown in Fig. 4, where
each projection at angle θ is the sum of rays pi , and f j is

Figure 3: Filtered Back Projection reconstruction. The color
scale is normalized so the sum of all pixels is unity.

Figure 4: Diagram of a ray intercepting a pixellated image
for the purpose of SART reconstruction.

value of the "j" pixel. Each ray intercepts a fractional area
of a pixel wi j =

ai j

d2 . Therefore, the original image may be
reconstructed from projections by solving linear system in
Equation 7 that shows how each "bin" of a projection is
determined from the "i" ray interacting with the "j" pixel for
N total pixels [2].

N∑
j=1

wi j f j = pi (7)

Thus wi j is an M by N matrix, where M is the total number
of all imaging rays for all projections, and N is the number
of pixels in the image. Inversion of wi j to solve for the value
of each image pixel f j would sufficiently reconstruct the
original image; however, M and N are often very large, and
often wi j is not square, and thus cannot be directly inverted.
However, wi j is often sparse, because many pixels in an
image may be blank, so only some pixels are intercepted
by the imaging rays. Thus SART is an iterative method
for solving Equation 7 based on an algorithm originally
developed by Stefan Kaczmarz and later developed by Kunio
Tanabe known as the "method of projections" [7] [5]. The



Figure 5: SART reconstruction. The color scale is normal-
ized so the sum of all pixels is unity.

resulting reconstruction of the simulated data from Fig. 2 is
pictured in Fig. 5. The RMS error for SART is significantly
lower than FBP, and beam tail reconstruction also appears
improved.
Two main free parameters exist in the "scikit-image"

Python library implementation of SART, namely the number
of iterations and the "relaxation" value. A reconstruction
from the first iteration of SART (i.e. the output of the "iradon-
sart" function) is passed back into the function as an initial
"guess". Successive iteration improves the RMS error, but
eventually artifacts appear and propagate, so there is a max-
imum iteration number to achieve the best reconstruction.
The relaxation value is the weighting factor α < 1 on each
pixel value as it is updated after each iteration. Thus a bal-
ance between relaxation and iteration number is necessary
to provide the best reconstruction with minimal convergence
time. Figure 6 shows how the RMS error of a SART recon-
struction depends on both the iteration and the relaxation
parameter. This plot informed the decision to use α = 0.1
and 3 iterations for the reconstruction in Fig. 5.

Figure 6: SART Reconstruction RMS error as a function of
iteration and relaxation parameter.

MTA BEAM RECONSTRUCTION
To test the assertion [1] that the Fermilab MTA beam is

non-elliptical in the vertical plane, a reconstruction of the ver-
tical phase space was carried out using previously-acquired

multiwire profile data. Pictured in Fig. 7, the reconstruction
is limited by the low number of profiles that span a limited
phase rotation angle range. The data is too limited to make
a strong conclusion about the beam ellipticality, and a more
detailed quadrupole scan should be considered in the future.

Figure 7: SART Reconstruction of MTA beamline vertical
phase space. The color scale is normalized so the sum of all
pixels is unity.

CONCLUSION
Both FBP and SART computed tomography algorithms

have been compared to reconstruct the transverse phase
space of a simulated beam. Error images were created with
a pixel-by-pixel comparison of a 2-D histogram of the origi-
nal distribution and each reconstruction, then an RMS error
for each error image was computed. Using the RMS error
as a figure-of-merit, it has been determined that the SART
algorithm provides superior accuracy in reconstruction of
a non-elliptical beam distribution. Further work will use
such reconstructions to improve the optics match of trans-
fer beamlines at Fermilab with non-elliptical beam from
resonant extraction.
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