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Beam Tomography

The transverse phase space distribution of a
particle beam can be reconstructed from profile
iInformation with the same computed tomography
algorithms used Iin the medical industry.

Beam profiles are taken at a single point in a
beamline while varying the optics between the
profile monitor and the reconstruction location.
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Experimental setup for gathering beam profile data.

For linear transfer matrix R between the point of
reconstruction and the profile monitor, we define
the scaling factor “s” and phase space
orientation angle “6” as:
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Scaling each beam profile horizontally by “1/s”
and vertically by “s” lets us consider each profile
as a one-dimensional projection of the two-
dimensional phase space for that plane. Each
projection Is a “view” of the phase space through
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Each scaled beam profile is a one-dimensional projection of the two-
dimensional phase space.
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Beam Simulation

A deliberately non-elliptical and asymmetric
beam distribution is created as a list of particle
(X,X") vectors, then passed one-by-one through a
symmetric FODO channel using the thick-lens
linear transfer matrices. Fixed-bin histograms
simulate multiwire profile data for each beamline
tune. Each row of the resulting “sinogram”
represents a profile at angle “0”.
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Initial beam distribution and resulting profile data as a function of
the phase space orientation angle throughout the simulated scan

Simultaneous Algebraic Reconstruction

Each imaging ray interacts with a fractional pixel
area “a”. Thus the following linear system
describes each bin “p;” in a projection, where "t

s each pixel's value and "w.” Is typically a non-

sguare matrix of weighting factors based on how
the imaging ray interacts with a pixel.
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SART Is an iterative algorithm that solves this
large and under-constrained linear system for “t”

while comparing solutions to an initial “guess”

and applying a correction for each iteration.

SART recon., RMS error = 0.0307 0.027
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SART reconstruction of simulated beam transverse phase space

SART has two free parameters: the relaxation
“a” and the number of iterations. Both must be
fine-tuned to provide the best reconstruction with
lowest artifacts and missing information, I.e.
lowest RMS error.
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SART reconstructions as a function of algorithm free parameters
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